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Fig. 1. Scheme diagram of the GMCVQKD based on untrusted entanglement source.
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Fig. 2. Scheme diagram of the GMCVQKD with trusted entanglement source.
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Fig. 3. The performance comparison between the
GMCVQKD scheme with an untrusted entanglement source
and the original GMCVQKD scheme under homodyne de-
tection: (a) The relationship between the security key rate
and transmission distance of the two schemes; (b) the rela-
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tance of the two schemes; (c) the relationship between

Holevo bound and transmission distance of two schemes.
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Abstract

In a practical quantum communication system, the security of signal source of continuous-variable
quantum key distribution may be jeopardized due to device flaws and hidden attacks. In this paper, an
improved scheme for Gaussian-modulated continuous-variable quantum key distribution based on an untrusted
entangled source is proposed. In particular, the entanglement source is placed in an untrusted quantum channel
to simulate that it is controlled by an eavesdropper, thereby verifying the security of Gaussian-modulated
continuous-variable quantum key distribution in a complex environment. This work in detail analyzes the
influence of untrusted entanglement source on practical Gaussian-modulated continuous-variable quantum key
distribution system, and the numerical simulation shows that the performance of Gaussian-modulated
continuous-variable quantum key distribution will dramatically decrease once the entanglement source has
moved out of the sender, and it will slightly rise as the untrusted entanglement source slowly moves away from
the sender. This paper further introduces two kinds of optical amplifiers, which are phase-sensitive amplifier and
phase-insensitive amplifier, to compensate for the imperfection of the coherent detector. These amplifiers are
beneficial to enhancing the quantum efficiency of the receiver’s detector. Specifically, the security key rate of
Gaussian-modulated continuous-variable quantum key distribution with homodyne detection can be well
improved by phase-sensitive amplifier, and the security key rate of Gaussian-modulated continuous-variable
quantum key distribution with heterodyne detection can be well improved by phase-insensitive amplifier. To
summary, this paper proposes a scheme for Gaussian-modulated continuous-variable quantum key distribution
with untrusted entanglement source, experimental results show that the proposed scheme can generate secure
quantum keys even if the Gaussian entanglement source is untrusted, and the two optical amplifiers can
effectively improve the quantum efficiency of the detector at the receiver. This work aims to promote the
practical process of the Gaussian-modulated continuous-variable quantum key distribution system and provide
theoretical guidance for the practical implementation and application of the Gaussian-modulated continuous-

variable quantum key distribution system.

Keywords: continuous-variable quantum key distribution, untrusted entanglement source, optical amplifier,

quantum communication
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