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Fig. 1. Intersatellite laser interference system and phase-locked loop (PLL).
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Fig. 2. Phase locked loop structure.
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1 BOCHUNLES B4
Table 1.  Noise of weak light phase locking.
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Fig. 3. Block diagram of the linearized PLL model.
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Fig. 8. (a) The constructed spectral density and theoretical
value of spectral density of laser phase noise; (b) the con-
structed spectral density and theoretical value of spectral

density of granular noise.
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Abstract

Weak light phase locking is an important part of intersatellite laser interference ranging. Phase-locked loop
(PLL) is used to track the phase of heterodyne interference optical signal. Owing to shot noise, laser frequency
and other kinds of noise, there is a phase difference between the internal PLL local oscillator and the
heterodyne signal, while the phase detection range of the PLL is only one period. If the phase difference exceeds
the phase detection range at a certain time, the local oscillator may enter the wrong operating point under
feedback regulation, resulting in cycle clip, which leads to subsequent phase reconstruction errors. In this paper,
a cycle clip diagnosis method based on the detection background of gravitational waves is proposed. Based on
the original PLL, an auxiliary frequency phase divider with larger phase detection range is introduced, which
can provide a basis for judging whether the cycle clip occurs in the PLL. In this paper, a digital weak-light PLL
model is established to evaluate the influence of various noise. The theoretical spectral density of the error
phase is given according to the two main kinds of noise (laser phase noise and particle noise). Considering the
limited detection range of PLL, large error phase may lead to cycle clip, making the PLL work at the wrong
locking point. A phase meter with smaller frequency division phase range can be used to solve this problem.
First, the input heterodyne sine signal is converted into in-phase square wave N frequency division. Then the
phase difference is determined by comparing the output signal with output signal reduced by 1/N through the
time-to-degital converter (TDC) Based on the theory of PLL and noise, the theoretical model of frequency
division phase meter is established. The simulation results show that the frequency division phase meter can
realize a wide range of phase detection under the current theoretical framework and has the ability to judge the

cycle clip of weak light phase locking. It can be used in the weak- light phase locking task represented by LISA.

Keywords: space gravitational wave detection, weak light phase locking, cycle slip, frequency division phase

meter
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