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Fig. 1. Schematic of the (a) conventional laser power transfer based on acquisition, tracking, and pointing (ATP) system and (b)

adaptive resonant beam wireless laser power transfer/communication.
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Fig. 2. Working distance, receiver FoV and transmitter

FoV of the alignment-free laser.
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Fig. 3. Schematic of the alignment-free laser: (a) The receiver and the transmitter are on the optical axes of each other; (b) the re-

ceiving end deviates from the optical axis of the transmitting end, and the orientation has an angle with the oscillating optical path.
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i R, B2 SEGOLAGERIR. W — 1
JEfRRE, DA G R IR A RE LIS L5 ALY
KA —2G IR T H R B EA S, YT
DT 22 i HR 33 5f I G e A 70 0 BE B AN 7 SRR A
A, RIBGOANRESE 4 A B, 52 T —E AL
POCA I TR R, S O A8 i Bt 4O
5 ABHEZ 18] 2 U sItBOR:, DA I3 HR 88 £ ) 25
BRALSEAR/IN, XN dy FIFR XS R

F 1 IHEASE TS
Table 1.  Parameters used in the experiment and calcula-

tion.

Lenses  Focal length/mm  Distances  Length/mm

LO 10 dy 23.8

L1 24.6 dy 23

L2 24.6 ds 23.8

L3 48.3 d, 23

L4 25, 50 (51.8) ds 49.1
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Table 2.  Typical experimental results of alignment-free lasers for adaptive resonant beam charging/communication applications.
Retro- Laser gain Output Optical Working Receiver . °
Year reflector medium power/W efficiency /% distance/m FoV/(°) Transmitter FoV/ (%)
2019 Corner cube SOA 0.0017 — 1 — 6‘6. .
(only one dimension)
. +13° +8.3°@0.15 m
7 Nd:YVO, disk — .
2021 CER , dis >10 0.15 @ 0.15 m (0 output)
202218/ Ball lens EDFA 0.4 — 30 Unlimited —
o
2022 CER Nd:YVO, disk ~10 -15 -3 - +5.1°@2 m
(0 output)
Optically pumped 1.37°@0.5 m
9] -
2022 CER VECSEL 0.863 0.57 2 047°@2 m
202110 CER — 0.012 — 2 — —
o
our - pR Bulk Nd:GAVO, >5 ~30 5 L30°@5 m 4.6°@5 m
work (half maximum)
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Abstract

Lasers with cavities consisting of retroreflecting elements can give the potential for large-dynamic-range
alignment-free operation, which makes the important applications in adaptive wireless laser power
transfer /communication possible. In such an emerging approach based on resonant laser beam in the cavity, the
laser is delivered to the photovoltaic cell for charging application (or photodiode for communication application)
at the receiver automatically, without the necessity of positioning and aiming the receiver in conventional laser
wireless power transfer techniques. The laser capable of operating alignment-free efficiently across large-
dynamic-range is essential for the application. In this work, the requirements for the dynamic range of
alignment-free operation are summarized. An alignment-free laser with a cavity consisting of cat-eye
retroreflectors is designed, and a large alignment-free dynamic range as never before is experimentally
demonstrated. Telescope system in the laser cavity is adopted to suppress the beam expansion to enhance the
working distance between the laser transmitter and the receiver. Coupled cavity scheme is used to reduce the
laser intensity between the transmitter and the receiver for laser safety. By calculating the stability zone of the
laser cavity, it is found that the stability zone of the receiver cat-eye distance is quite narrow. Hence, the laser
operation is very sensitive to the defocusing of the cat eye defocusing. Moreover, the cat eye defocusing induced
by optical aberrations of spherical aberration and field curvature can be rather serious, when the long working
distance results in a large beam size and the angle of incidence is large, hence limiting the effective working
distance and the field of view of the alignment-free laser significantly. In the experiment, the improved optical
designs with the aberrations compensation are adopted for large-dynamic-range alignment-free operation. The
end-pumped Nd:GdVO, laser at 1063 nm can deliver over 5-W output within a working distance range of 1-5
m, and a receiver field of view of £30°, without cavity realignment. The transmitter field of view reaching 4.6°
(full width at half maximum) at a working distance of 5 m is also realized, with a corresponding receiver
transverse movement range of 40 cm. Our work clarifies the optimizing criteria of the large-dynamic-range

alignment-free laser based on cat-eye retroreflectors.
Keywords: alignment-free laser, cat-eye retroreflector, cavity stability zone, optical aberration
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