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Fig. 1. Schematic diagram of ghost imaging system.
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Fig. 4. Reconstructed images of grayscale FSI and SGI under different measurement times.
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Fig. 6. The reconstruction results of grayscale FSI and SGI under the superposition of random noise with different intensities, the
floating range of random noise amplitude is 0, 0.0075, 0.015, 0.03, 0.075, 0.12 times of the maximum floating range of the simulated
measurement value for the low frequency part of the image, respectively: (a) The final reconstructed image of the two methods un-
der different noise levels; (b) PSNR value of the final reconstructed image; (¢) PSNR difference between the final image and the

noiseless image.
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Fig. 9. Reconstruction results of the three methods under different intensities of random noise. The floating range of random noise

amplitude is 0, 0.0075, 0.015, 0.03, 0.075, 0.12 times of the maximum floating range of the simulated measurement value for the low

frequency part of the image: (a) Final reconstructed images of the three methods under different noise levels; (b) PSNR value of the

final reconstructed image; (¢) PSNR difference between the final image and the noiseless image.
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and sinusoidal ghost imaging”

Chen Xing-Yu  Zhou Xin' Bai Xing  Yu Zhan
Wang Yu-Jie Li Xin-Jia  Liu Yang  Sun Ming-Ze

(College of Electronic and Information, Sichuan University, Chengdu 610065, China)

( Received 5 December 2022; revised manuscript received 6 May 2023 )

Abstract

Ghost imaging, also known as correlation imaging, is one of the research hotspots in the imaging field.
Various ghost imaging systems with different basic principles and implementation architectures have emerged,
but the correlation between them is weak, showing a diversified trend and recent research progress is slower
than before. Studying the essence of ghost imaging theory is a feasible direction to explore the unknown field of
ghost imaging. Through research, we find that Fourier ghost imaging and sinusoidal ghost imaging are based on
the same type of orthogonal sine speckle and cosine speckle, which have a very high similarity. At the same
time, sinusoidal ghost imaging method can give a complete spatial description and spatial imaging process, so
we guess that these two imaging methods can reveal the relationship between spatial imaging and Fourier
domain imaging. On this basis, it is proved that Fourier ghost imaging and sinusoidal ghost imaging are
equivalent in principle. The former can be realized by n-step phase shift, while the latter can be equivalent to
two-step phase shift. Considering that both of these methods use sine and cosine fringes as structural speckles.
By combining the spatial decomposition characteristics of sine speckle imaging, the relationship between
structural speckle imaging and traditional ghost imaging is analyzed, and the principles of some methods
constructed on the basis of these two methods are explained. The simulation results applied to edge detection
show that the combination of the two methods can simultaneously obtain the better anti-noise performance of
Fourier ghost imaging and the higher imaging efficiency of sinusoidal ghost imaging. Since sinusoidal ghost
imaging relates the characteristics of image spatial decomposition to traditional ghost imaging, and their
expression is equivalent to the expression of orthogonal Fourier transform domain of Fourier ghost imaging, the
association of ghost imaging methods in Fourier domain and even in the whole orthogonal transform domain
and spatial domain can be generalized. This conclusion may provide a way for associating different kinds of

ghost imaging, and it can be hoped that more and more new types of ghost imaging systems will be developed.
Keywords: ghost imaging, Fourier transform, orthogonal transformation space, phase shift algorithm
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