
 

回音壁式耦合光力学系统中的混沌现象*

华志豪    郭琴    樊碧璇    谢旻†

(江西师范大学物理与通信电子学院, 南昌　330022)

(2022 年 12 月 18日收到; 2023 年 4 月 5日收到修改稿)

在光力学系统中, 辐射压力引起的非线性可导致系统产生混沌等多种丰富的动力学行为. 从有序转变到

混沌有各种各样的途径, 本文研究了回音壁式耦合光力系统中两种不同途径通往混沌的现象——倍周期分岔

道路和准周期道路. 两个全同的光力学子系统通过光学倏逝波进行耦合, 调控子系统间的耦合强度, 可以有

效地改变系统的动力学行为. 采用分岔图、李雅普诺夫指数以及相空间轨迹的变化分析系统从有序到混沌的

转变. 研究表明, 较强的耦合强度会迫使两个子系统的振荡产生完全同步, 子系统间相互耦合的作用可等效

于子系统光学模频率与外加控制场频率失谐量的增加, 耦合光力学系统的动力学行为等效于单个光力学系

统的动力学, 可实现倍周期分岔道路通往混沌的转变. 而对于相对较弱的耦合, 耦合系统的动力学将在高维

相空间展开, 极限环发生 Hopf分岔, 形成环面吸引子. 选取合适的失谐量, 耦合系统可实现从准周期道路进

入混沌的现象.
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 1   引　言

光力学系统 [1] 是研究光场和机械振子相互作

用的典型模型. 近年来, 光力学系统的相关研究备

受关注, 已经成为量子光学、微纳光子学等多个领

域的研究对象, 并且在精密测量和量子信息处理等

方面展现出重要的应用价值, 呈现了丰富的物理现

象, 如机械振子的主动冷却 [2,3]、量子纠缠 [4,5] 和类

电磁诱导透明 [6,7] 等.

光力学系统中的辐射压力可以诱导多种非线

性效应. 在 20世纪八十年代, 光力学系统中的双

稳态就已被发现 [8]. 近二十年来, 随着腔的品质和

性能不断提高, 光力学系统中的非线性动力学得到

了广泛研究, 如动态多稳性 [9,10]、随机共振 [11,12]、耦

合光力学系统中的同步效应 [13,14]、魔鬼阶梯 [15]、阿

诺德舌头 [16] 等.

混沌是非线性动力学的一个重要分支, 其实现

机理是众多研究者关注的焦点. 目前已在各领域实

现了多种通往混沌的途径, 如倍周期分岔道路 [17,18]、

准周期道路 [19,20] 及阵发性混沌道路 [21−23] 等. 光力

学系统因具有非线性也成为研究混沌的典型系统

之一 [24−29]. 在光力学系统中, 通往混沌的道路大部

分遵循倍周期分岔道路, 由准周期道路通往混沌的

现象鲜有研究. Roque等 [30] 曾研究发现, 在弱耗散

的经典光力学系统中可产生准周期吸引子, 实现从

极限环到产生准周期运动, 进而实现向混沌的转

变. 这为光力学系统中产生混沌现象提供了一种新

的途径. 另一方面, 在连续系统中, 非线性和三维

及以上相空间是产生混沌的必要条件. 高维相空间

意味着更丰富的动力学行为 [31]. 因此, 耦合系统成

为研究环面吸引子和高维混沌等动力学行为的自
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然候选者. 在耦合系统中, 环面吸引子为最常见的

吸引子, 但环面吸引子可能会随着参数的变化直接

失稳, 从而导致混沌, 即产生由准周期道路通往混

沌 [31−35]. 关于耦合系统中产生准周期道路向混沌的

转变, 较早的研究可以追溯到 Buskirk和 Jeffries[31]

在电子电路中的实验, 他们发现改变驱动电压时,

电路中单一非线性谐振器表现为倍周期道路向混

沌转变, 而两个耦合的谐振器则表现为准周期道路

向混沌转变. 随后, 有研究发现, 在耦合 Lorentz系

统 [32,33] 和耦合 Duffing振子系统 [34] 中不仅存在准

周期运动, 还存在稳定的三频准周期运动以及高维

混沌等现象.

基于上述研究背景, 本文利用光学倏逝波将两

个回音壁式光力学子系统进行耦合, 考虑两个光力

学子系统的系统参数完全相同, 研究耦合光力系统

中的混沌动力学行为. 研究发现, 两个子系统间的

耦合强度对于系统混沌运动的产生及其动力学过

程有着重要的作用. 当两个光力学子系统间的耦合

较强时, 强耦合将会导致两个子系统的动力学完全

同步, 两个子系统间耦合的作用等效于改变子系统

中控制场与腔场的失谐量, 耦合系统可实现传统的

倍周期分岔通往混沌的现象. 然而, 对于两个子系

统间弱耦合的情形, 耦合系统的动力学将进入高维

相空间, 极限环发生 Hopf分岔, 形成二维环面吸

引子. 在合适的失谐量下, 调控耦合强度, 可实现

二维环面吸引子向奇异吸引子的转变, 即从准周期

运动通往混沌的转变. 文中采用系统的分岔图和对

应的李雅普诺夫指数谱进行详细分析, 并展示了锁

频这一经典动力学现象.

本文的总体安排如下: 第 2节介绍本文的研究

模型——回音壁式耦合光力学系统, 理论推导系统

的运动方程, 分析无耦合情形下子系统的稳态区域;

第 3节讨论耦合光力学系统的非线性动力学行为,

使用力学模振幅分岔图和最大李雅普诺夫指数联

合进行分析, 详细展示了耦合系统中倍周期分岔和

准周期运动向混沌的转变行为; 最后, 第 4节进行

了总结.

 2   理论模型

a1 a2

ω1 ω2

本文研究的是回音壁式耦合光力学系统如

图 1所示. 两个光力学子系统  和  (频率分别为

 和  )通过光学倏逝波耦合, 并且两个子系统中

ωm1 ωm2

E1

E2 ωL

分别包含频率为  和   的力学模. 采用纤维型

波导分别与两子系统的边侧耦合, 用于控制场  

和   (频率均为  )的输入与输出.
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图 1    回音壁式耦合光力学系统示意图

Fig. 1. Schematic diagram of the coupled whispering gallery

modes cavity opto-mechanical system.
 

(ℏ = 1)

在旋转波近似下, 该耦合系统的哈密顿量可表

示为  : 

Ĥ =

2∑
i=1

[
∆iâ

†
i âi +

1

2
ωmi(x̂

2
i + p̂2i ) + gix̂iâ

†
i âi

+ Ei

(
â†i − âi

)
+Gâ†i â3−i

]
, (1)

â†i âi (i = 1, 2)

∆i = ωi − ωL (i = 1, 2)

x̂i p̂i (i = 1, 2)

gi (i = 1, 2)

Ei (i = 1, 2)

其中第 1项表示两个子系统光学模的自由哈密顿

量,   和  分别为光学模的产生和湮灭算

符,    是光学模频率与控制场

频率的失谐; 第 2项表征力学模的自由哈密顿量,

 和   分别为无量纲化的坐标和动量算

符; 第 3项表示光学模与力学模之间因辐射压力耦

合的相互作用哈密顿量, 耦合系数为   ;

第 4项是输入控制光场驱动光学模的哈密顿量,

 为控制光场的振幅; 最后一项为两个子

系统的相互作用哈密顿量, G 是耦合强度.

考虑坏腔极限, 即光学模与力学模之间的耦合

系数远小于光场的衰变率, 机械模式的零点涨落远

小于对应光学模式的线宽, 因此系统的量子涨落可

以忽略不计. 系统随时间演化的动力学方程可以表

示为 

α̇1=−iGα2 − i∆1α1 − ig1α1x1 − iE1 − κ1α1, (2)
 

α̇∗
1 = iGα∗

2 + i∆1α
∗
1 + ig1α∗

1x1 + iE1 − κ1α
∗
1, (3)

 

α̇2=−iGα1 − i∆2α2 − ig2α2x2 − iE2 − κ2α2, (4)
 

α̇∗
2 = iGα∗

1 + i∆2α
∗
2 + ig2α

∗
2x2 + iE2 − κ2α

∗
2, (5)

 

ṗ1 = −ωm1x1 − g1 |α1|2 − γ1p1, (6)
 

ẋ1 = ωm1p1, (7)
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ṗ2 = −ωm2x2 − g2 |α2|2 − γ2p2, (8)
 

ẋ2 = ωm2p2, (9)

αi = ⟨âi⟩ xi = ⟨x̂i⟩ pi = ⟨p̂i⟩ (i = 1, 2)

κi (i = 1, 2)

其中   ,    ,    是算

符对应力学量的平均值.   是光学模的衰

γi (i = 1, 2)变率,   是力学模的阻尼率. 为简单计, 系统

的环境温度被设置在绝对零度, 即热噪声忽略不计.

通过线性化处理, 可以得到系统的雅可比矩阵

为如下形式: 

 

J =



−κ1 ∆1 + g1x1 0 G 0 g1α1i 0 0

−∆1 − g1x1 −κ1 −G 0 0 −g1α1r 0 0

0 G −κ2 ∆2 + g2x2 0 0 0 g2α2i

−G 0 −∆2 − g2x2 −κ2 0 0 0 −g2α2r

−2g1α1r −2g1α1i 0 0 −γ1 −ωm1 0 0

0 0 0 0 ωm1 0 0 0

0 −2g2α2r −2g2α2i 0 0 0 −γ2 −ωm2

0 0 0 0 0 0 ωm2 0


, (10)

αir αii(i = 1, 2)其中  和  是腔中光学模复振幅的实部

和虚部. 雅可比矩阵的特征值可用于判断系统在平

衡点的稳定性以及李雅普诺夫指数的计算.

G = 0 x1

∆1 ∆1

图 2给出了两个子系统之间无耦合的情形下

(  ), 系统处于稳态时, 力学模的位置   随失

谐   的变化曲线图. 可以看出, 随着失谐   的增

加, 系统可由单稳态 (蓝色区域)演化为自持振荡

ξ∗

状态 (绿色区域), 然后再过渡到双稳区域. 图中小

框内曲线描述了系统从单稳态区域过渡到自持振

荡区域的临界区域内雅可比矩阵特征值的复平面

图. 在该区域内, 随着失谐的微小增加, 雅可比矩

阵将出现一对共轭特征值——x 和  , 两特征值的

虚部跨越实轴, 系统发生超临界 Hopf分岔, 形成

不稳定焦点, 并同时产生一个稳定的极限环, 系统

开始自发振荡.

 3   系统的混沌现象

 3.1    倍周期分岔道路

∆1 = ∆2 = −1.0ωm1

x1 x2

x1 x2

x1 x2

本文考虑由两个全同光力学子系统构成的回

音壁式耦合系统, 即两个子系统具有完全相同的系

统参数. 当两个子系统间耦合强度较强时, 可产生

迫使两个子系统的振荡完全同步的情形 [36,37]. 为了

体现强耦合导致的同步现象 , 图 3给出了失谐

 时, 不同耦合强度 G 下两个子

系统力学模位置   和   的输出曲线, 其中蓝实线

为  的输出曲线, 红虚线为  的输出曲线, 系统各

算符的初始平均值随机. 不难发现, 当耦合强度较

弱时, 两个子系统的输出并不同步, 如 图 3(a)和

图 3(b)所示. 然而, 在较强耦合下, 两个子系统的

位置输出曲线   和   在时域上完全重合, 即子系

统之间的振荡实现了完全同步, 如图 3(c)—(f)所

示. 而且在强耦合下, 随着 G 的增加, 系统的动力学

行为也有显著改变, 其输出从有序化的周期振荡

逐步转变为无序化振荡. 当两个子系统耦合强度为
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图 2    两个子系统无耦合情形下, 力学模的稳态位置   随
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稳解, 红色表示不稳定解. 小框内为雅可比矩阵的一对共轭

特征值虚根变化的复平面图. 系统参数分别为 

      

x1

∆1

κ1=1.0ωm1, γ1=0.26ωm1, g1=−0.0006ωm1, E1 =

2980ωm1

Fig. 2. System stability diagram of     with the varying of

detuning      under uncoupling  between  the  two   subsys-

tems. Blue stands for the stable branches, green stands for

parametric  instability,  and red stands for  unstable  branch.

The virtual rosots of  a pair of  conengenvalues for the Jac-

obi matrix are presented in the small box. The parameters

are               
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G=1.7ωm1 , 位置输出曲线为单周期振荡, 如图 3(c)

所示, 图中以黑色框标记单周期. 继续增强耦合强

度 G, 振荡周期也不断增大, 由单周期振荡变为倍

周期、四周期乃至无周期振荡. 图 3(f)中的无周期

运动表明系统很可能已经进入了混沌状态.

α1 = α2

当系统在强耦合下迫使两个子系统达到完全

同步时, 两个子系统力学量的稳态值在任意时刻均

相等, 光学模的复振幅也不例外, 即  . 系统

的动力学方程中 (2)式可改写为 

α̇1 = − iGα2 − i∆1α1 − ig1α1x1 − iE1 − κ1α1

= − i∆′
1α1 − ig1α1x1 − iE1 − κ1α1, (11)

∆′
1 = ∆1 +G

∆1

∆′
1

其中  , 这说明当两个子系统完全同步

的情况发生时, 耦合强度为 G、失谐为  的耦合系

统的动力学行为与无耦合情形下失谐为  时的单

个光力学系统一致.

x1

x1

λ1

为了定量分析耦合系统的动力学行为, 进一步

给出了强耦合下  的振幅随两个子系统间耦合强

度变化的分岔图以及最大李雅普诺夫指数图, 如

图 4所示. 李雅普诺夫指数是表示相空间相邻轨迹

的平均指数发散率的数值指标. 该指数越大, 表示

系统的局域稳定性越差, 当其大于零时, 则代表系

统处于混沌状态. 观察分岔图可以得知, 随着耦合

强度的增强,   的振荡从单周期开始, 随后周期逐

步加倍, 直至无周期振荡. 对于无周期区域, 最大

李雅普诺夫指数  皆为正值, 表明在这些区域, 系

∆′
1 = ∆1 +G

统已经进入混沌状态. 随着耦合强度的增加, 系统

的动力学行为的周期数倍增, 直至进入混沌状态,

这种现象被称为倍周期分岔, 也是单个光力学系统

中通往混沌最常见的途径 [25]. 耦合系统的倍周期

分岔路径的产生正是由于单个子系统在失谐

 的区域存在一个对应的倍周期分岔

现象. 强耦合的作用迫使两个子系统的振荡完全同

步, 因此耦合光力学系统的动力学行为等效于单个

光力学系统, 实现了倍周期分岔道路向混沌的转变.
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图 3    不同耦合强度下两个子系统力学模位置的输出曲线 , 蓝实线对应   , 红虚线对应   　(a)  ; (b)  ;

(c)  ;  (d)  ;  (e)  ;  (f)  . 两个子系统参数完全相同 , 初始条件随机 ,   

 , 其余参数和图 2相同

x1 x2 G = 1.0ωm1 G = 1.5ωm1 G = 1.7ωm1 G = 2.3ωm1 G = 2.8ωm1

G = 3.0ωm1

∆1 = ∆2 = −1.0ωm1

Fig. 3. Output curves of the two mechanical modes under different coupling strengthes. The blue solid line and the red dashed line

correspond to     and    , respectively: (a)    ; (b)    ; (c)    ; (d)    ; (e)    ;

(f)   . The parameters for the two subsystems are exactly the same, and the initial conditions are arbitrary. All paramet-

ers are the same as those in Fig. 2 except for   . 
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图 4    (a)系统倍周期分岔图; (b)最大李雅普诺夫指数图.

所有参数和图 3相同

Fig. 4. (a)  Schematic  period-doubling  bifurcation  diagram;

(b) the curve for the maximum of Lyapunov exponents. All

parameters are the same as those in Fig. 3. 
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 3.2    准周期道路

∆1 = ∆2 = 0.5ωm1

接着, 进一步考虑两个全同子系统间的耦合强

度相对较弱的情形. 强耦合可迫使两个子系统的动

力学完全同步, 耦合系统的动力学行为与单个子系

统的维度相同, 只在四维相空间展开, 这被称为同

步流形, 而完全同步下出现的混沌可被称为同步混

沌. 在相对较弱的耦合下, 子系统之间的振荡具有

相干性, 耦合系统的动力学行为将在高维相空间展

开. 此时, 通过调节光学耦合强度, 可诱导极限环

发生超临界 Hopf分岔, 产生环面吸引子, 这为耦

合系统产生准周期路径提供了先决条件. 为了可观

测到耦合系统的环面失稳, 实现准周期路径通往混

沌的转变, 还需系统处于容易产生复杂动力学行为

的参数区域范围内. 倘若在合适的失谐量下, 强耦

合迫使两个子系统达到完全同步时, 系统已经处于

或接近处于同步混沌状态, 那么这就为相对较弱耦

合时产生环面失稳并通往混沌提供了可能. 为此,

选取失谐为  , 调节耦合强度, 研

究耦合系统从准周期运动向混沌的转变.

∆1=∆2=0.5ωm1

I1 a1

x1 p1 x1-x2

x1

x1 10−5

图 5给出了两个子系统在失谐 

时, 不同耦合强度下系统的三维相空间图  (  腔

光子数)-  -  的轨迹、二维相空间图   的轨

迹、李雅普诺夫指数谱以及  的频率谱. 为了体现

混沌对初始条件的敏感度, 图 5给出了两组初始条

件下三维相空间图的轨迹, 其中第一组初始条件是

随机生成的, 第二组初始条件与第一组的区别是初

始的   被增加了   , 图中利用两种不同颜色进

行表征. 其余三个子图只展示了系统为第一组初始

条件下的结果. 在无共存吸引子的情况下, 系统在

任意初始条件下的功率谱和李雅普诺夫指数谱的

特征稳定. 二维相空间则很好地体现了两个子系统

动力学的关系.

λi (i = 1, 2, 3, 4)

G = 1.47ωm1

λ1 λ2 0 λ3 λ4

(0, 0,−,−, · · · )

为了区分极限环和极限环面, 借助李雅普诺夫

指数谱来判断吸引子的类型. 系统具有八维相空

间, 拥有 8个李雅普诺夫指数. 在数值模拟中, 从

大到小排列, 李雅普诺夫指数的第 4个值表现为稳

定负值, 因此图 5只给出了前 4个李雅普诺夫指数

 . 当两个子系统间的耦合强度

  时, 三维相空间图显示吸引子为标准

二维环面, 如图 5(a)所示. 在李雅普诺夫指数谱

中,   和  重合在  处, 而  和  为负值, 表明吸

引子属于  型, 对应二频准周期运动.

x1 ω01

ω02

G = 1.53ωm1

λ1

x1

G = 1.60ωm1 λ1

x1

G = 1.87ωm1 x1-x2

x1-x2

λ1

而在  的频率谱中, 其主频峰  以左出现了一个

不可公度的新频率  , 谱中所有频率分量都可以

表示为这两个基本频率的线性组合, 这也是二频准

周期运动的表征. 当耦合强度增强到  

时, 如图 5(b)所示, 三维相空间图表明吸引子出现

了分形结构的趋势, 而李雅普诺夫指数   上升为

正值 , 说明系统已经处于混沌状态 . 不难看出 ,

即使两组在具有微小差别的初始条件下, 三维相

空间图有着完全不同的两组轨迹 (两种不同的

颜色表征), 表明混沌对初始条件非常敏感, 这是

混沌的特点之一. 然而整体上, 两组轨迹又被限

制于相同的区域, 这是因为吸引是耗散系统的整体

性质. 相较于图 5(a),    的频率谱细峰逐渐消失,

并且峰值也有所降低 , 此时系统刚刚过渡到混

沌, 混沌的特征还不够明显. 继续增强耦合强度,

 , 如图 5(c)所示 , 相较于图 5(b),   

明显上升,   的频率谱展现出混沌的标准特征, 即

宽峰和类似噪声的整体谱线. 三维相空间图出现了

奇异吸引子的特征, 即明显的分形结构. 然而, 当

耦合强度达到    时,   二维相空间图

为一条关于   对称的直线, 如图 5(d)所示. 这

是两个子系统动力学行为完全同步在相空间的体

现, 过强的耦合强度导致子系统的振荡完全同步.

结合李雅普诺夫指数 (  的正值)以及与图 5(c)类

似的功率谱, 说明此时耦合系统处于同步混沌的

状态.

x1

x1

λ1 λ2 λ3

λ2 λ3 λ2 λ3

x1 x1

下面仍以  的振幅随耦合强度变化的分岔图

以及李雅普诺夫指数谱来详细分析系统从准周期

道路向混沌的转变过程, 图 6给出了系统的分岔图

和李雅普诺夫指数图.   的振幅分岔图中显示, 随

着耦合强度的增大, 系统的动力学过程历经了极限

环、准周期运动、有限周期运动以及由准周期运动

向混沌状态的转变. 当耦合强度 G 较小时, 系统的

振荡是单周期的极限环, 其相应的李雅普诺夫指数

谱中最大值   为零,    和   为相等的负值. 随后,

 和   开始分离,    上升至零并保持为零, 而  

则下降, 依然为负值. 这表明极限环发生了超临界

Hopf分岔, 转变为稳定的二维环面 [38], 即准周期

运动.   的振幅变得稠密, 而且  的频率谱上将会

出现两个不可公度的基本频率. 随着耦合强度的增

强, 两个基本频率会发生微小移动. 如果满足两个

基本频率之比为有理数 , 系统将出现锁频现象 ,

并且系统的动力学行为由准周期运动转变为有限
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λ1

λ2

λ3

λ4

周期运动. 如此交替变化, 两种动力学现象交替的

间隔越来越小, 直至系统完全处于准周期运动状

态. 然而继续增强耦合强度, 系统将出现环面失稳,

开始由准周期运动向混沌状态的转变, 其标志是分

岔图中下边界不再清晰. 而系统处于混沌状态的另

一标志是李雅普诺夫指数   急剧上升, 变为大于

零的正值, 同时  上升至零的位置, 在这个范围内

吸引子拥有环面的形状, 如图 5(c)所示. 当耦合强

度过强时, 系统的动力学行为再次出现了突变, 李

雅普诺夫指数谱也有一个明显的变化,    先上升

为零, 随后立刻下降为负值, 与   基本保持相等.

强耦合导致了两个子系统振荡完全同步, 引起了同

步混沌的现象, 这与图 5(d)所示结果完全符合. 同

步混沌的发生为耦合系统产生环面失稳给予了很

好的解释. 混沌往往发生于系统处于容易产生复杂

动力学行为的参数区域内. 虽然强耦合导致的同步

混沌不是高维相空间的产物, 但其发生区域依然是

系统动力学剧烈变化的区域, 并且具有鲁棒性. 因

此, 调节光学耦合强度, 使环面吸引子不断靠近同

步混沌时, 将会激起耦合系统产生复杂的动力学行

为, 从而产生环面失稳变为奇异吸引子, 实现从准

周期路径通往混沌的转变.
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0.5ωm1

图 5    不同耦合强度下系统达到稳定时的状态图　(a)   ; (b)   ; (c)   ; (d)   .

其中每张子图中包含 4个分图, 左上图对应   三维相空间轨迹, 两种颜色表征两组初始条件下的轨迹; 左下图对应  

二维相空间轨迹 ; 右上图对应动态李雅普诺夫指数谱 (前 4个李雅普诺夫指数 ); 右下图对应   的频率谱 .   

 , 其余参数和图 3相同

G = 1.47ωm1 G = 1.53ωm1

G = 1.60ωm1 G = 1.87ωm1

I1-x1-p1
x1-x2

x1

∆1 = ∆2 = 0.5ωm1

Fig. 5. Stability  diagrams  of  the  system  under  different  coupling  strengthes:  (a)    ;  (b)    ;  (c)

 ;  (d)    .  Each  subgraph  includes  four  charts,  the  top  left  one  corresponding  to  the  three-dimensional

phase space of   , and the two colors represented the traces for two sets of initial conditions; the bottom left one correspond-

ing to the two-dimensional phase space of    ; the top right one corresponding to Lyapunov exponents (the top four Lyapunov

exponents); and the bottom right one corresponding to the frequency spectrum of    . The other parameters are the same as those

in Fig. 3 except for   . 
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 4   结　论

综上所述, 本文利用光学倏逝波耦合两个回音

壁式全同光力学子系统, 从理论上研究了该耦合系

统中两个子系统间的相互耦合对系统产生混沌现

象的影响. 调控两个光力学系统之间的耦合强度,

耦合系统可实现倍周期分岔道路和准周期道路进

入混沌的转变. 倍周期分岔的产生原因是由于强耦

合迫使两个子系统的振荡完全同步, 使得在强耦合

下调制耦合系统的耦合强度等效于改变了子系统

光学模频率与外加控制光场频率的有效失谐量, 耦

合系统的动力学可退化为单个光力学系统的动力

学过程, 实现倍周期分岔通往混沌的道路. 对于较

弱的耦合, 系统的动力学将进入高维相空间, 极限

环发生 Hopf 分岔, 形成环面吸引子. 选取合适的

失谐量, 系统可实现环面失稳, 从而产生从准周期

道路进入混沌的现象.

感谢江西师范大学物理与通信电子学院段正路教授的

讨论.
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图  6    (a)准周期路径分岔图 ; (b)李雅普诺夫指数图 (前

4个李雅普诺夫指数). 所有参数与图 5相同

Fig. 6. (a)  Schematic  quasiperiodic  bifurcation  diagram;

(b) curves  of  Lyapunov exponents  (the top four Lyapunov

exponents). All parameters are the same as those in Fig. 5. 
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Abstract

In  opto-mechanical  systems,  the  nonlinearity  caused  by  radiation  pressure  can  lead  to  various  abundant

dynamical  phenomena  such  as  chaos.  Chaos  is  an  important  branch  of  nonlinear  dynamics,  and  researchers

focus on understanding the transitions from order to chaos in different systems. In this paper, we investigate the

chaotic  dynamics  in  a  system  consisting  of  two  evanescently  coupled  identical  cavity  opto-mechanical

subsystems, where the optical fields are in whispering gallery modes. To thoroughly analyze the transition from

order  to  chaos  in  our  system,  we  utilize  the  bifurcation  diagrams,  the  Lyapunov exponents,  and  phase  space

trajectories to characterize the system properties. It is found that the coupling strength between the two opto-

mechanical subsystems plays a crucial role in determining the systemic dynamic behaviors. There are two routes

to  chaos  in  our  system  i.e.  the  period-doubling  transition  and  the  quasiperiodic  transition.  These  routes

correspond  to  strong  coupling  and  weak  coupling  between  the  two  opto-mechanical  subsystems,  respectively.

Furthermore,  the  results  show  that  the  synchronization  between  the  oscillations  in  the  two  opto-mechanical

subsystems  can  occur  under  strong  coupling.  In  this  situation,  the  dynamic  behaviors  of  the  two  opto-

mechanical subsystems are exactly identical and the manipulation of the coupling strength is equivalent to the

tuning of the frequency detuning between the cavity fields and their corresponding driving fields. Consequently,

the coupled system behaves as a single opto-mechanical system, enabling a period-doubling transition to chaos

through  increasing  the  coupling  strength.  In  the  case  of  weak  coupling,  the  dynamics  of  the  two  opto-

mechanical  subsystems  are  no  longer  synchronized,  and  the  coupled  system  dynamic  behaviors  unfold  in  an

eight-dimensional phase space. The limit cycles experience the Hopf bifurcation, resulting in the emergence of a

toric attractor. Within a certain range of parameters, i.e. appropriate frequency detunings, the two-dimensional

torus  becomes  unstable  as  coupling  strength increases,  leading to  a  quasiperiodic  transition into  chaos  in  our

coupled opto-mechanical system.
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