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Fig. 1. Schematic diagram of the coupled whispering gallery

modes cavity opto-mechanical system.
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Fig. 2. System stability diagram of x1 with the varying of
detuning Aj under uncoupling between the two subsys-
tems. Blue stands for the stable branches, green stands for
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Fig. 3. Output curves of the two mechanical modes under different coupling strengthes. The blue solid line and the red dashed line
correspond to x1 and xa, respectively: (a) G = 1.0wm1; (b) G = 1.5bwmi; (¢) G = 1.Twm1; (d) G = 2.3wm1; (6) G = 2.8wm1;
(f) G = 3.0wm1. The parameters for the two subsystems are exactly the same, and the initial conditions are arbitrary. All paramet-
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Abstract

In opto-mechanical systems, the nonlinearity caused by radiation pressure can lead to various abundant
dynamical phenomena such as chaos. Chaos is an important branch of nonlinear dynamics, and researchers
focus on understanding the transitions from order to chaos in different systems. In this paper, we investigate the
chaotic dynamics in a system consisting of two evanescently coupled identical cavity opto-mechanical
subsystems, where the optical fields are in whispering gallery modes. To thoroughly analyze the transition from
order to chaos in our system, we utilize the bifurcation diagrams, the Lyapunov exponents, and phase space
trajectories to characterize the system properties. It is found that the coupling strength between the two opto-
mechanical subsystems plays a crucial role in determining the systemic dynamic behaviors. There are two routes
to chaos in our system i.e. the period-doubling transition and the quasiperiodic transition. These routes
correspond to strong coupling and weak coupling between the two opto-mechanical subsystems, respectively.
Furthermore, the results show that the synchronization between the oscillations in the two opto-mechanical
subsystems can occur under strong coupling. In this situation, the dynamic behaviors of the two opto-
mechanical subsystems are exactly identical and the manipulation of the coupling strength is equivalent to the
tuning of the frequency detuning between the cavity fields and their corresponding driving fields. Consequently,
the coupled system behaves as a single opto-mechanical system, enabling a period-doubling transition to chaos
through increasing the coupling strength. In the case of weak coupling, the dynamics of the two opto-
mechanical subsystems are no longer synchronized, and the coupled system dynamic behaviors unfold in an
eight-dimensional phase space. The limit cycles experience the Hopf bifurcation, resulting in the emergence of a
toric attractor. Within a certain range of parameters, i.e. appropriate frequency detunings, the two-dimensional
torus becomes unstable as coupling strength increases, leading to a quasiperiodic transition into chaos in our

coupled opto-mechanical system.
Keywords: coupled opto-mechanical systems, period-doubling bifurcation, quasiperiodicity, chaos
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