) 32 2 3R Acta Phys. Sin. Vol. 72, No. 14 (2023) 144204

1.3 um-2.8 ns FAYLPEEIZ Nd:YVO, #eE"

2k 55 A V3

& O

FHED ko H D

1) (M ERbA R A5 B AR, JbaT 100094)
2) (P EPBEBE R BT, dER 100094)
3) (PEPBEERERFCHE R, L5 100049)
(2023 4 1 A 3 HYzl; 2023 45 4 A 28 HikZIENR)

ZRICAT 1342 nm K Y HOGIE B4 0 Q (9 Nd:YVO, #OGS #E T HLE 5900 oT . BT T H OB IF ¢
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Fig. 1. (a) Polarizer reflection versa time; (b) photon number density versa time; (c¢) normalized instantaneous intensity of output
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Fig. 3. Experimental scheme for a 1.3 um Nd:YVO, electro-

optical cavity dumping laser.
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Fig. 5. (a) Temporal pulse shape of 1342 nm laser; (b) tem-
poral pulse shape of 671 nm laser.
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Abstract

1.3-um Nd laser has significant practical applications in various fields, such as fiber communication,
medical treatment, frequency conversion, and scientific research. Many applications of a 1.3-pm laser,
particularly frequency conversion, benefit greatly from a short pulse width with high peak power. In the paper,
an electro-optical cavity dumping Nd:YVO, laser at 1342 nm wavelength is studied theoretically and
experimentally.

The pulse width for an electro-optical cavity dumping laser is determined by the optical length of the
cavity. A narrower pulse width is obtained by reducing the length of the cavity and the round trip time of the
laser in the cavity. However, when the round trip time in the cavity approaches to the falling edge time of the
electro-optical switch, shortening the length of the cavity will not obtain a narrower pulse width, and the falling
edge time of the electro-optical switch will influence the laser pulse width. The temporal characteristics of the
laser pulse are simulated when the falling edge time of the electro-optical switch is close to the round trip time
in the cavity.

The influence of the falling edge time of the electro-optical switch on the laser pulse duration is analyzed
theoretically. The modified rate equation is used to study the relationship between the falling edge time and the
laser pulse width.

We demonstrate an electro-optical cavity dumping Nd:YVO, laser. The atom percent of 0.3% Nd:YVO,
placed in a short Plano-concave cavity is in-band pumped by an 880 nm quasi-continuous-wave diode. A fiber-
coupled diode laser module (NA = 0.22) with a power of 30 W is used. An LiNbO; electro-optical switch is
employed for the cavity-dumping. The 1342-nm cavity-dumping laser operates at a repetition rate of 1 kHz,
single-pulse energy of 0.21 mJ, and pulse width of 2.8 ns. Near-diffraction-limited beam quality with an a2
value of < 1.2 is achieved. The setup uses MgO:PPLN crystal to generate efficient second harmonic at 671 nm,
with a pulse width of 1.8 ns. To the best of our knowledge, this is the shortest pulse duration ever obtained

from 1.3 pm actively @-switched Nd-doped laser.

Keywords: 1342 nm Nd:YVO, laser, in-band pump, electro-optic cavity damping, nanosecond laser
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