#) 32 % 3R Acta Phys. Sin. Vol. 72, No. 14 (2023) 146401

$H#52%1-U (100) XM L H, & FfES . H [F-FH0
O RFHHME—HFREBEHR

2 > e WNINAN N LA
FREVD O FHERKY HAERY BDPYY ek FEHV
1) (BERZMRLAR, JeEb B AR TR A S0, Jbat 100084)
2) (WL ESBHETYT, P94 710025)
3) (ALFUMER AR SHARSA B, LR EARBFE N E A%, Jb5 100875)

(2023 4E 1 7 8 HY3; 2023 4 4 A 27 HkEIEUH)

MRS BTENAT s R, B BN B SR R AR R, AP R e e R B R S A AR AR
it — RGN, R T B R SR RS ST SRR, A SO T Hy 23 17 Mo JE T8 28 F Mo
URIZA-U (100) /YA B0 B, H AT O Jety~ 76 bR 2 11 A9 2 4 1, MR B 28 — PR I 5. B35 T
Hy 73 F 76 [ 3R 3 I B8 09 e /INRB B B A% TR T H ORI O J5 7 ¢ Jncf i W B S TR 7 1800 20 D S 0 55 4 i
T H RN O JEF PR HI b g B B 5 R B o A I R L AR ST A SRR W], 2 H, S FAE TN AT IR S, 7 B kg
R, YA H—H B, 25 KR BE AR, DI SR 5 A T BB, FRUE W B AR SR A AR, [
H, £F Mo U JZ 22 i i 25 P i BE 22 3 T Mo JE 748 2 3K il ; O Ji 118 Mo-U K i 4/ i it 1Y fiE 241K, RERS7E
il B i A TR S R RS L AR S L BB, T R IR SRR H ST A O U I R P B SR R
HRE 22, HE TS5 VRN I Ao i, 5 R W B T AR v A SR T B B  T5 3, B 2T a2 A7 1
BHE 4 SR AR R B BEA AR SCALER, S84 T /N TAE S A G B R 1M BT 5. B STAE R O BRI 1 4R
SN A B T T LB B SR, O PR ST PH S B i A | TR A i R AR PR R T Bl B B

PERE AL BRI SO, IF S BE— 2D 8 S A0 B A PR DTS P (25 s 1)

KB HHEHA 4, RIS, A, MY
PACS: 64.70.kd, 68.35.-p, 68.43.Bc, 71.15.Mb

1 5 =

< s HATHCR B IR R RN o T
B i K RRICR, TP R 92, JLRAT 5 A
U. Gl A A 2 SO, BEOR g, g™
RN TR ZE R ARG, AT A
508 BN HE P AR RE 425 BT o A&
b A e A A P A B 5 0L AT = R
H: o-U BIF45H; p-U IETT 854 -U M7 Jr 4G

DOI: 10.7498/aps.72.20230033

¥, 5 HABPIFPEERIF L, 1-U S S5 F 5 ARy,
HA & m R, EHAER TR, H-UEER
THRARFEE, 23R4S, A BFIEIESS, 7-U &
M SRR LA A A 4 0 7 A, BEdh oA
e RGN R 7 R 5 -U MEE M & B T &, an:
Mo, Pu, Zr, Ti, Nb &5 %40 & 4 AN URES N
V-U g g fase 2100, W GERSHR = -U Y
PEPERE 0L B SE A & —Fh, AR
KA F12A P RE M UE hERE, 74 e 1T
TS S AN e F ) O A A

*ER A RPIASS (kS 11975135, 12005017) FlE K& SRS & BT (HEHES: 2020YFB1901800) ¥ B ifuEt.

t BIE1EE. E-mail: zcli@tsinghua.edu.cn
©2023 HEHEFS Chinese Physical Society

http://wulixb.iphy.ac.cn

146401-1


mailto:zcli@tsinghua.edu.cn
mailto:zcli@tsinghua.edu.cn

#) 32 % 3R Acta Phys. Sin. Vol. 72, No. 14 (2023) 146401

MRIRRL 2 —. BT, P E MRS & e eIt
JB T R A SR MU 5 (70,

SR, PO U BAT E 20 T4bA, H il
AR O REER, HLALSE TR RE N R AR — BRI Ik
SRS 2B F B BUZ W, BTl U U &8
TERRAL | 3 i | D77 A5 e A o I i Y — 4 B 2 ) A
JEAR A . e T S 4 SR A A R,
e Al 2 TS ol 2 B S A 4R il U
Ja, s Ay, A SNERE, REAE SN
R PR AR 1O, il 55 2R NS, 23 A A ) S A
Yy, kg —ERER, SR, Rimfbivs, v
— 2L [ N SR AR o O I I ] B3, AR
R KA AL, PUE RN T AR 2 A
ATREVE. FURG, W50 TR S sl Rl & <5 00 2 T

RO T REMTSE 1219, F A TRETE (AES).

X SO TRES (XPS) 2R 07 vk, 3648 17 %
SRS RO 22 Fh RUBE TR /N 55 iR 2R 1T S 25 51,
M 7~ T 22180 S W A SO ALER, {5256 25
(BRI, SIEB0 7 v e 1 S Tl AT S A7 A — o R PR
P, TR R B ] S AR R ) .
W25 B T RROR B R A R 4, E TR
W OB R R MRLEA T BB 5. /Ny
- 2% THT VR O R o O i R 1T S o 1) 1
BE, BT U, AT EERR T /N FHE o-U
FY-U PRFPAS [) 2 T 28548 A e B e e el A, e
FEALE Hy, Oy, HyO, CO, K. X T4 4
FIEEA W BIEST, DFFEE R A 2 5 78
RIEA S U JEF, 3858 T B 2RJEF XN T
B A5 IR LS A AROWAILEE. 4N Tian 45 14 A S —
PEJEFE A T3 1RSSOk, R U BT
FH Mo JEFEMR, 98 T 0, i FHEBARILE U
(110)F I W9 W B, IF 2387 T Mo T R B 24X O,
A3 TR AGRZ IR, Liu 45 19 36 F25 BE Y2 R BEIE, 1)
T IR EHER A A R IR, S BRI EL & 41k
T AAEKIR)Z R, BT Ti B4 O, 14 £
T W B RE R, 259800 R T R I8 42 2 3 4
JF AR R AP B. AR SCEH R T Hy 7 1-U
(100) /Mo 11 W Bk 47 A 8 2 — 2 D BT 5 061 3
BLERFHASAEY-U (100) /Mo FEFRIL NP H
W R, Hy o0 TR B AR B, e 23 50 A T B A4 72
T, Hy 258 4 2 A~ H R, fb=A i T34
FEI. SLEIA SR, A EMSHEITIR N TAE U
U A &R I0E & WK MY, 58 E O

FEAE P TR FNE | SR 55 B o i
FLER AW, TRECR T RAS [ A7 /)N
S FAEANE S SR BRI T 2SR SR
I, 24 /INg0F 7 2 T4 BRI B o8 55 fb 2 W o, G
T RIS | TR TR R AV B X R
) S g ML AR b Rl 5 4 2 T ok ) 2
BL, XHZ N B R FER T 58 38 /N -2 S AT oY
HA EEMB R X, HHATH S5 R b,
EA IR A TF A2

ARSCR) S — 1 R PR R P S VS P IS
IEE, PR T Hy 23 T1E Mo JE T4 Molf)Z-U
(100) FOfR BT, H A1 O JEF7E FiRF iy i
PO ARY BT o Mo JRF 48 24 1l Mo
WZ7-U (100) BRI 255 T 304 SCiik [14, 16],
I3 4w 45 Mo-U il 4Mo-U. ARIEA SC/EH B
HWFEEER, Hy 70T IO B W B o, BERET -
TIMCRE, eRs Hy MBS R & A s, WRRIR A
Wy BRI RS AL W B ST L 7 e R A B
/NGB AR R A A | R IE T R TSR
Bader HLfif . 2247 HLfT 25 B AR 45 21 708X T H
F O J - FH AR e W R o5 (B4 1R e 3422,
PR ShAS I RE, DA 322 1 J R S
T Ja B T —FORIRN R EE T PR B AL, e pr
1B R R R B v EE R R, A SRR RE R AR R
B 55 A A D ) BB O

2 HEFEAEY

AR SRS R P AT X ) % B2 2 R B HE
ZETHY VASP 5.4.4 85—V R T, FHISR
Jin 48 5% I HF- 18 - (projector augmented wave,
PAW) JETFF- [ 2] 1718, ik gtz i
TR AL T . o A8 4 G HZ Rk T
NAHEESUTT I (generalized gradient approxima-
tion, GGA), Z LA UL FEBEREETIA,
EARR 11z R IE L Perdew-Burke-Ernzerhof
(PBE)!1920], HIA SCHY U, Mo, H, O [ #45%
M GGA-PBE #3(. R & & & AR50 =
it Methfessel-Paxton J5 % #f 11 5 4% 41 H 75
1. RIS AR 7w, R s S S 4l A A 4R k4R
BRER 22/ T 1x10°6 eV, JIlesch s Jy 4 5
TFHRATI/NT 2x10°2 eV /A, i LR 6 i 7k 21
(conjugate gradient, CG) #EA7EACIHH, MHILT

146401-2



) 32 2 3R Acta Phys. Sin. Vol. 72, No. 14 (2023) 146401

Fofb T, I L Ret B ek | e i A5 20 254
SR 25, FI S AT 2R CI-NEB(climbing ima-
ge-nudged elastic band method) 777k P2 AR
Gy FAEF T AW B S, B R AN AR R R
4, AR 25 W R A BN 23S p B b R
WER LR E f/ NEE R IR AR IR R4 2 . ML TE 5
() NEB J5 i, %5 2 e f s 1 SN 2 32 214
P sy, IR R R B AR Re i, JEAE
R TS Ryl (1 6 -4 N e B N s G A B VA R 1187
(A8 A, BB SIS BIO) U S A AR AR R Rl i 2
INF 1107 V. FEARSCIRALTHE P, 22208 F 1)
AR Ak, ~F- T BT RE IR A2 24 500 eV.

X -U S 85401k, Brillouin XA
H Monkhorst-Pack 77 1545 AR 2 k5 231 K 6
RRA% ST ] 11 x 11 x 11, T E U Sl
AR HBCN 3.433 A, SCR{EN 3.532 AR R
2478 2.803%. [A] BB Ui 9 28 Hy 47 F K 43 5
110 Ax10 Ax10 Ay k&t rieie, 13
BRI H-H#K A 0.75 A, 52860 0.74 A, =&
W2EN 1.351%. 7-U fmHs & 20 H—H #K A3t
EAHY) 5L A5 RV A B, H T -U s 2L
ML IR AR FE5H, #3775 2 U7
T R R A TR A-U (100) e, Hodb B A
Mo JR FE#EZE—4 U KT, 44 Mo JF T #ik
RIZPA U JEF, I Mo JEF#24 ) Mo &
TFURIZXT /NGy R0 Tl s 0. 3R TS 7R R
SERASAN ) g 57 S RTIE 5 (00 AT, 7 AR T4
JEFF.

W IBE E,qs & XN

Eads = Egabra — Egap — E, (1)

B Egapea /NGT /TR RIS R 3R B S BE
By, AT ) JEFIRRT R RE SR Ey /T
JRFRRE . AR RE A Ul RTINS 25 FF
E, WA RERRAPG R AR 2 . AR, WRBRRE N IEAE, W
W B JE S5 A R

3 RN G A
3.1 H, o FREHE R

A BT 09 2458 T Hy 78 Mo IRJZH1-U
(100) 3 T Y M BT, 32 605 1 i Xof Ak R B A7 A
15457 (top). Hifi (bridge). Z5fi (hollow), M Hy *F-

A7 RV R B P AL R R R R R T
H, 78 Mo-U I [ s AW FHIFFE, 45 R3],
BRs AT R Hy 20 T B E R T 5%
TEJ A, Pl M B TR R I R IR B A
H, 73 FRIR KA R, S s E e i, (2
BERERC/N, RO N TR R, 40 H, 2
AR A TR FAT /2 BB, Hvh, R B A5
A SRR E VEHE R e 260 > AR > AL AR
TS Hy o0 TS, MR, Hy 0 THERA
—E R BRI, R A AR W AT ATIUAL, fE—%E
ST Ok, H—H g ikE = A 25
KAWL, i R T IS TR DL H
e TR -7 08 B Ae) 20 2 451, 43 58 7330 N Mo-U
A AMo-U' B T fife 125 1) RIS 3T 7 AP A S ) At g o
RESRER. &1 0 Hy 707 IRk e s A

E 1 Hy 2 FWRMmE-RZEE  (a) Mo-U; (b) 4Mo-U
Fig. 1. Schematic diagram of H, molecular adsorption and
dissociation: (a) Mo-Uj; (b) 4Mo-U.
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Fig. 2. The minimum energy paths (MEPs) for H, adsorption and dissociation on Mo-U and 4Mo-U surface: (a) Mo-U; (b) 4Mo-U.
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Fig. 4. (a) PDOS between H and surface atoms at the adsorption and dissociation on 4Mo-U: (a) PDOS of 3th Mo and H atoms;

(b) PDOS of 4th U and H atoms.
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Table 1. The net charge number of H, molecules at different dissociation stages on Mo-U surface.
Configuration H/e Hy/e Mo, /e Us/e Ug/e Uys/e
Initial 0.1277 0.1032 0.2662 -0.1315 -0.3385 -0.2727
Transition 0.2218 0.2552 0.1256 0.0307 0.2919 0.3678
02 0.3442 0.3442 0.0495 -0.0407 -0.3044 -0.4325
03 0.4179 0.4177 0.0034 0.0411 0.2918 0.4775
Final 0.4482 0.4482 0.0130 -0.0436 -0.2637 -0.5015
£ 2 Hy /M TAE AMo-U KM T BE T 1) i 4L
Table 2. The net charge number of H, molecules at different dissociation stages on 4Mo-U surface.
Configuration H/e H,/e Mo, /e Mo,/ e Mog/e Mo,/ e
Initial 0.0267 0.0319 0.2742 0.2484 0.2456 0.1868
01 0.1000 0.1000 0.2685 0.2337 0.2087 0.1183
Transition 0.2080 0.2080 0.2528 0.2073 0.1327 0.0377
03 0.2992 0.2992 0.2527 0.2030 0.0856 -0.0345
04 0.3529 0.3529 0.2518 0.2158 0.0399 -0.0536
05 0.3777 0.3777 0.2408 0.2453 0.0095 -0.0225
Final 0.3926 0.3926 0.2480 0.2632 0.0077 0.0043
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Fig. 5. Differential charge density of H, at the adsorption and dissociation on Mo-U (Isosurfaces level: 0.002 e/A3): (a) Initial state;

(b) transition state; (c) final state.
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Fig. 6. Differential charge density of H, at the adsorption and dissociation on 4Mo-U (Isosurfaces level: 0.002 ¢/A3): (a) Initial state;

(b) transition state; (c) final state.
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Fig. 8. (a) The MEPs for H atom diffusion on Mo-U surface; (b) the MEPs for H atom diffusion on 4Mo-U surface.
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Fig. 9. (a) The MEPs for O atom diffusion on Mo-U surface; (b) the MEPs for O atom diffusion on 4Mo-U surface.
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Fig. 10. Top and side views of H atom bulk diffusion on Mo-U surface before and after structure optimization: (a) H-Mo-U_First
before optimization; (b) H-Mo-U_Second before optimization; (¢) H-Mo-U_Third before optimization; (d) H-4Mo-U_First before
optimization; (e) H-4Mo-U_ Second before optimization; (f) H-4Mo-U_Third before optimization. The corresponding image below is

optimization result, such as (a’) H-Mo-U_ First after optimization.
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Fig. 11. Top and side views of O atom bulk diffusion on Mo-U surface before and after structure optimization: (a) O-Mo-U_ First
before optimization; (b) O-Mo-U _Second before optimization; (¢) O-Mo-U_Third before optimization; (d) O-4Mo-U_First before
optimization; (e) O-4Mo-U_Second before optimization; (f) O-4Mo-U_Third before optimization. The corresponding image below is

optimization result, such as (a’) O-Mo-U_First after optimization.
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Table A1l. ICOHP between O atom and partial atoms in
Mo-U after bulk phase diffusion.

Mo-U_ Second ICOHP/eV Mo-U_ Third ICOHP/eV

Mo1-01 1.6431 U5-01 4.8108

U5-01 4.4165 U7-01 5.0568
U8-01 2.6392 U10-01 4.8167
U10-01 4.4180 U17-01 2.2676
U17-01 2.5125
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Table A2. ICOHP between O atom and partial atoms in
4Mo-U after bulk phase diffusion.

4Mo-U_Second ICOHP/eV 4Mo-U_Third ICOHP/eV

Mo3-O1 2.4263 Us-01 3.9520

Mo4-01 1.5266 U10-01 6.0116

Ug-01 5.0490 U14-01 5.9456

U16-01 5.0493 U16-01 3.9521
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Abstract

As an important uranium alloy, U-Mo alloy has excellent mechanical properties, structural stability and
thermal conductivity, which is an important nuclear reactor fuel and tank armor. However, there exists a
serious of fundamental problems of U-Mo alloy which need solving for practical applications. U-Mo alloy is
easily subjected to surface corrosion of small molecules including the H,, O,, H,O, and CO,. The hydrogen
corrosion and oxidation will have significant influence on it. In order to further investigate the reaction
mechanism, based on the density functional theory and the transition state algorithm, the first principles
calculation of 7-U (100) with Mo atom doping and Mo coating is carried out.

Firstly, the minimum energy path of H, molecule is calculated for the dissociation adsorption on Mo-U and
4Mo-U surface. Secondly, the transition states of H and O atoms are studied during surface diffusing between
adjacent most stable adsorption sites. Thirdly, the bulk phase diffusion of H and O atoms are investigated and
the relationship is analyzed between adsorption energy and adsorption height in the bulk phase diffusion.

The results show that when H,; molecule is adsorbed at the configuration of top horizontal position, the H
atom needs to overcome a barrier to triggering off the H—H bond-broken and then is adsorbed on surface
bridge site by the neighboring atoms. The energy barrier for H, dissociation on 4Mo-U is higher than that of
Mo-U. Meanwhile, the lower energy barrier is required for O atom to diffuse in Mo-U, so that it can be
adsorbed, dissociated and diffused quickly, and then forming an oxidation film on the surface. Furthermore,
both H and O atoms need to cross the energy barrier to diffuse into the body phase, forming chemical bonds
with the atoms and staying in the body phase stably finally.

In this paper, we comprehensively analyze the dissociation and diffusion of the initial stage for hydrogen
corrosion and oxidation on uranium-molybdenum alloy by theoretical studies. The results lay a foundation for
theoretically exploring the surface corrosion mechanism of U-Mo alloy. Meanwhile, They provide theoretical
support, for investigating burn-in and corrosion of uranium-molybdenum alloy, predicting material properties
under extreme and special environment, and providing a reference for further research on corrosion resistance of

uranium-molybdenum alloy.
Keywords: uranium-molybdenum alloy, surface corrosion, transient state, dissociation and adsorption

PACS: 64.70.kd, 68.35.—p, 68.43.Bc, 71.15.Mb DOI: 10.7498 /aps.72.20230033

* Project supported by the National Natural Science Foundation of China (Grant Nos. 11975135, 12005017) and the National
Basic Research Program of China (Grant No. 2020YFB1901800).

1 Corresponding author. E-mail: zcli@tsinghua.edu.cn

146401-13


mailto:zcli@tsinghua.edu.cn
mailto:zcli@tsinghua.edu.cn

Chinese Physical Society

%ﬂ *ﬁActa Physica Sinica

Institute of Physics, CAS

HBZv-U (100)RME EHS TR HETRORTY HAE—HFEF A
FRIB WHEH RAkI 3 EeE FEHR
First principles study of H, dissociation, H atom and O atom diffusion on Mo doped vy -U (100) surface

Li Jun-Wei  Jia Wei-Min ~ Wei Ya-Xuan LU Sha-Sha  Wang Jin-Tao  Li Zheng-Cao

5| {5 B, Citation: Acta Physica Sinica, 72, 146401 (2023) DOI: 10.7498/aps.72.20230033
TEZL I View online: https://doi.org/10.7498/aps.72.20230033
BHAPIZS View table of contents: http://wulixb.iphy.ac.cn

LR BRI HoA S EE

Articles you may be interested in

SUHE v ~U (100) /Mo W BT oA B4 26— VR IR R 52
First principles study of hydrogen adsorption and dissociation behavior on y —U (100)/Mo surface

WIFREHR. 2022, 71(22): 226601  https://doi.org/10.7498/aps.71.20220631

HLCURIFJEL 54k Cu2ZnSnSA(112) 3 i A5 55 — Pk 5L HE 155
First—principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states

YIFIE4. 2018, 67(16): 166401  https://doi.org/10.7498/aps.67.20180626

AUFFAESIZR Y Hsh J127 0055 — PR B 5

First—principles study on the diffusion dynamics of Al atoms on Si surface

PFEEEAR. 2019, 68(20): 207302 https:/doi.org/10.7498/aps.68.20190783

CO5H 18R AE Fe(110)F 1T 1 5 4
Competitive adsorption of CO and H, on strained Fe(110) surface
PPz 2019, 68(21): 217103 https:/doi.org/10.7498/aps.68.20190660

— VR B 2s v o —Fe MIH R A HAE IS

Investlgatlon of interaction between a —Fe metal and H atom by ab—initio method

PIBR2A4R. 2020, 69(5): 053101 https://doi.org/10.7498/aps.69.20191775

MoO /SiFt il X FHBAAL fiy S AR 2 IR B — PR T R 5
First principle study of formation mechanism of molybdenum-doped amorphous silica in MoO,/Si interface

YIBR2A4R. 2019, 68(10): 103101  hitps:/doi.org/10.7498/aps.68.20190067


https://wulixb.iphy.ac.cn
https://doi.org/10.7498/aps.72.20230033
http://wulixb.iphy.ac.cn
https://doi.org/10.7498/aps.71.20220631
https://doi.org/10.7498/aps.67.20180626
https://doi.org/10.7498/aps.68.20190783
https://doi.org/10.7498/aps.68.20190660
https://doi.org/10.7498/aps.69.20191775
https://doi.org/10.7498/aps.68.20190067

	1 引　言
	2 计算方法和细节
	3 结果讨论与分析
	3.1 H2分子表面解离吸附
	3.2 H原子和O原子表面扩散
	3.3 H原子和O原子体相扩散

	4 结　论
	附　录
	参考文献

