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Fig. 1. Principle of motion induced eddy current testing: (a) Without defect; (b) with defect.

168105-2



) 32 2 3R Acta Phys. Sin. Vol. 72, No. 16 (2023) 168105

Horp Loz in) b g A BEARBE ) w5
Wang %5 P (s REUSER ST T (Re, < 1),
ESZ RoF 5 H Bk #g A RSHA S, Yuan 46 18 36
A 3o AR B (B R 2L Rey, 972X, WSS B X
R ESZ 22 &Y (M), RN
ESZ WA X 2 B 5 ] B A i, Rey, B8 KA A% i
B\, Brauer %5 PU 8124 Re,, BRA] (Re, > 1),
Zxrer 5 AR R LS, KA ESZ IR
JESARX M AR OC R, AR, Rey, BOKRHT,
ESZ i HL i B S BT, HI R 0L ESZ 1Y
TEAR T 2, XA IR BT 5 50 e iR
HREA —EXMERE. AH, Brauer 45 P12 ffF 58048
% Rey, B, 35— PV BAE—ABEANERIES, 25
[ P R R 0 A Ak U R RS e, SXRERE
fRifb T 58 — i, A R TS50

IR, AR Rey, 5500 T, FHARFE ST ESZ X
WOV Z 0 ] 286, FRARERE S iz g i
RE—I 21, I S 5 A TR, T
WAESE — RS iz shid RRIBES i, TN B — i
ZI T RS SE A . AR F AR X B /DN,
B T B AR TE S — G (932 Bl ) RS e R 4 R
12 B (R AR AR SRR ST 2022,

b 2 KRR ES [a] X 8k DL AR A3 5 AR X g
SR

Marek %5 23 G848 1, GOBR B 8 ik 79 e AL )
TR R R AR 1) T AR TR R
B PR AFOS R AN [, (I A% Bl 0T 55— 7 i Je
il AN 2) TRERBE I AR S F SR AN 2,
S BB IR T E TR, WSS ik
AR X T SRR, S —HL A 3
XRS5 ML A =2 A

WS S RGO T R 5 A 25 )5 G
Yk, T IHBRRE R R . R, SR
$of 5 R R A A Bl 5 1 R X S R Sk A (R M
(u, = 1). WAL 1, ZEE BRASTRE KR
22, BT IEREIEIR S — i T AR AR Mk, e
PURIASAE, Rl A 1 334

A3 WEARRERINAG B = R RRR.

RO RR B AR R AR R T AR (SR
TE/IN TP B IR B 5 K REAR RST ), W 94 AH R e Ak
5 ] () RS [ 7 70 - L AR b B B A 45 Y o2
B, Moreau 55 24 7EHE T8 B I A BT X AF 5 42
T R RE AR AR BT XL %0 TR A T R R

Bnar A Ak T & 2 v Z 07 1 eGSR %A
JiaCT, SRR IR Z 07 o %,
(D[R St 2771 g p =

R BRIXE T R

Table 1.  Relative permeability of common materials.
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Fig. 2. Schematic diagram of mathematical model.
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Table 2. Parameters of numerical simulation.
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Fig. 3. Influence of permanent magnet size on the Y-direc-
tion component of current density at each point on the

defect motion path.
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Fig. 4. Relationship between permanent magnet size and

current density mode at the origin.
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Fig. 5. Relationship between permanent magnet size and Z
direction component of the first magnetic field at the origin.
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Fig. 9. Permanent magnet is divided according to the po-
tential and current density contribution of the motion in-
duced eddy current at the origin. In the figure, it is as-
sumed that the magnetization direction of the permanent
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plate is X+ direction.
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Fig. 10. Setting of the first magnetic field: (a) Original pat-

tern; (b) pattern focusing current in Y direction; (¢) pat-
tern focusing current in X direction; (d) pattern focusing
potential (The direction of surface remanence is parallel to
the Z-axis; the relative velocity direction is parallel to the
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Fig. 14. Experimental structure.
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Fig. 16. Effect of changing permanent magnet size on de-
fect signal: (a) D = 3 mm; (b) D = 4 mm; (¢) D = 5 mm.
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Optimization design method of excitation magnetic field in
motion induced eddy current magnetic field testing

Li Kai-Xiang  Liu Run-Cong!
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Abstract

In the process of production or long-time use of a thin metal plate, micro defects (micro particles or pores)
will be produced in its interior. The number and size of these micro defects determine the quality of the thin
metal plate, affecting its service life and factor of safety. Therefore, quantitative and accurate characterization
of micro defects is a necessary to ensure the quality and safety of thin metal plate products. In this work, we
study the application of motion induced eddy current magnetic field testing in electromagnetic testing to detect
defects in conductive material and nonmagnetic material. The simulation results show that when the lift-ff
distance and the surface remanence of the permanent magnet are determined, the size of the permanent magnet
is positively correlated with the amplitude of the defect detection signal. The main reason is that in a motion
induced electric field without defects, the amplitude of defect detection signal is linearly related to the current
density mode at each point on the defect motion path. Increasing the size of the permanent magnet can
effectively improve the current density mode. As a continuation of the above results, an optimization method
for excitation magnetic field in motion induced eddy current magnetic field detection is proposed. The two types
of permanent magnet arrays generated by this method generate larger amplitude defect detection signals than
that by simple permanent magnets with the same volume and surface residual magnetism. The experimental
results show that the excitation magnetic field arrangement designed by the above optimization method
increases the signal amplitude by 80%-90% compared with that by traditional method. This optimization

method conduces to improving the sensitivity of motion induced eddy current magnetic field detection methods.

Keywords: motion induced eddy current, conductive nonmagnetic materials, electromagnetic nondestructive

testing
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