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Fig. 1. Acoustic characteristics of two-dimensional phononic crystal plate (TDPCP): (a) Schematic diagram of two-dimensional
phononic crystal plate cell; (b) photograph of the TDPCP sample; (c) transmission spectrum at normal incidence versus frequency
for the TDPCP and uniform brass plate with the height of 0.38 mm; (d) dispersion curves (red circles and blue circles) for the
TDPCP immersed in water, accompanied with the water line (dark circles). For comparison, the simply folded dispersion curves for
the uniform plate are plotted as lines with the same color; (e) the eigen pressure fields of four-order degenerate mode above the uni-
form brass plate with distance 0.05 mm at I" with frequency of 0.21 MHz; (f) the eigen pressure field above the TDPCP with dis-
tance 0.05 mm at I" with frequency around 0.24 MHz.
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Fig. 2. Calculated pressure field and measured displacement field at resonant frequency: (a) Calculated pressure field of unit cell

around the TDPCP at resonance frequency; (b) measured displacement field at the surface of the TDPCP at resonant frequency by

LDV.
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Fig. 3. Distribution of normalized Gor’ kov potential and
acoustic radiation force exerted on glass microspheres at the
surface of TDPCP at resonance frequency, the color repre-
sents the magnitude of Gor’kov potential, the length and
direction of the arrow represent the magnitude and direc-

tion of the acoustic radiation force, respectively.
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Fig. 4. Schematic diagram of the experimental system and experimental effect of particles manipulation: (a) Schematic diagram of

the experimental system; (b) initially, glass spheres are randomly distributed on the surface of the TDPCP; (c) when ultrasonic

wave is on, glass spheres are trapped and periodically arranged on the surface of the TDPCP.
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Abstract

Acoustic waves can manipulate particles without contact or damage, and has received increasing attention
due to their potential applications in various fields, such as cell sorting, organoid construction, and material
assembly. In general, high-throughput manipulation of microparticles relies on a large number of active
transducers and phase-shifting circuits to create standing wave patterns, thus significantly inducing system
complexity. Recently, we realized the parallel manipulation of microparticles by using an acoustic field
modulated by a one-dimensional phononic crystal plate. The concept is based on the fact that phononic crystal
plate can resonantly excite the zero-order asymmetric (4;) Lamb wave, inducing highly localized periodic
radiation force on the particles. In this paper, we further show that by using a two-dimensional phononic crystal
plate (TDPCP), parallel manipulation of massive particles can be achieved only with a single transducer. The
A, Lamb wave can be excited by a TDPCP, forming a two-dimensional periodic localized field, and then
particles can suffer negative vertical force and stable zero horizontal force, inducing two-dimensional periodic
trapping on the surface of the plate. Combining a PZT source with a TDPCP consisting of a brass plate
patterned with periodical brass stubs, we observe the capture and arrangement of glass microspheres, achieving
two-dimensional arrangement manipulation of particles on the TDPCP. This system represents a significant

advancement in developing high-throughput, rapid, and flexible devices for particles and cell manipulation.
Keywords: phononic crystal, acoustic radiation force, particle manipulation
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