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Fig. 1. Six combined models of V(110) plane and Pd(111)

plane (Pd atoms are silvery white and V atoms are red):
(a) AA"; (b) AB'; (c) AC"; (d) BA'; (e) BB, (f) BC".

# 1 ARFERER V(110) R ERE
Table 1.  Surface energy of V(110) surface with
different thickness.

Number of atomic Surface energy/(J-m?)

layers of V (Pd) V(110) Pd(111)
2(3) 2.42 1.434
4(6) 2.36 1.363
6(9) 2.37 1.361
8(12) 2.35 1.362
10(15) 2.34 1.361
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Fig. 2. Change of ideal adhesion work of V(110)/Pd(111)

interface with the separation between V and Pd layers.
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Fig. 3. V/Pd interface model and the corresponding local

density of states.
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Fig. 5. (a) V/Pd interface model, where the square repres-
ents the interstitial position of H atom dissolution; (b) tet-
rahedron position; (c¢) octahedron position; (d) pseudo octa-

hedron position.
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the interface.
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Fig. 7. Migration energy of H passing through V/Pd interface vertically.
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Fig. 9. Charge density at V/Pd interface: (a) Interface charge density map without H atom; (b)—(d) the charge density maps of H

atoms at positions 1, 7, and 9 in Fig. 5 (a), respectively.
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Fig. 10. (a) Vertical diffusion of H at the Pd doping interface; (b) vertical diffusion of H at the Fe doping interface; (c) migration

energy of H through the doping interface vertically.
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Fig. 11. (a) Diffusion of Pd to V vacancy; (b) diffusion of Pd to V vacancy in Pd doped interface; (c) diffusion of Pd to V vacancy

in Fe doped interface; (d) diffusion energy barrier of Pd to V vacancy.
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Bl 12 (a) H7E PAd B2 S SA G0 B A9 HL TR B0 R BLIET; (b) HAE Fe #8344 FL TG S4 07 B #9 WL TR SR 8L A (c) P 1E Pd 4B 7%
VLR ZS (6L 1 A5 B R (d) PATE Fe #8228 V BE(R 2 0 1) L Ay 25 [

Fig. 12. (a) Electronic local function diagram of H at S4 position of Pd doping interface; (b) electronic local function diagram of H

at S4 position of Fe doping interface; (c¢) charge density diagram of Pd in Pd-doped V matrix vacancies; (d) charge density

diagram of Pd in Fe-doped V matrix vacancies.
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Fig. 13. (a) Change of interface tensile stress with strain; (b) change of tensile stress with strain on V(110) plane and Pd(111) plane.
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Abstract

Hydrogen permeation through vanadium/palladium (V/Pd) metal composite membranes is an effective and
practical method of separating hydrogen from gas mixtures. In order to gain an insight into the relation
between the interfacial structure and hydrogen adsorption/diffusion properties of the catalytic Pd layer bonded
to the metal membrane, and then improve the ability of the alloy membrane to purify hydrogen, the first
principle based on the density functional theory is used to study the hydrogen adsorption/diffusion behavior at
the V/Pd metal composite membrane interface. The results show that because the charge density at the V/Pd
interface increases with the V/Pd bonding increasing, the dissolution energy of hydrogen atom (H) increases
with it approaching to the interface, and it has the highest dissolution energy near the V/Pd interface
(0.567 eV). Hydrogen migration energy barrier calculations show that compared with the maximum energy
barrier for horizontal diffusion of H along the V/Pd interface (0.64 V), the H vertical V/Pd interface energy
barrier (0.56 e€V) is small, thus H tends to migrate vertically V/Pd interface and diffuse from the Pd layer to
the V substrate side. As the hydrogen solvation energy of the Pd layer at the V/Pd interface (0.238 eV) is
higher than that on the V membrane side (-0.165 eV), H will gather on the V film side of the interface, which is
easy to cause hydrogen to be embrittled. Calculations of Pd/Fe doping of the V matrix show that comparing
with the undoped energy barrier (0.56 V), Pd/Fe doping can significantly reduce the maximum energy barrier
(0.45 €V/0.54 eV) in the diffusion path of the interface, which is favorable for hydrogen permeation and
diffusion. And the doped interface can inhibit the interdiffusion of V layer and catalytic Pd layer to a certain

extent, which improves the structural stability of the composite film.
Keywords: V/Pd interface, first principle, hydrogen permeation characteristics, mechanical property
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