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量子密钥分发 (quantum key distribution, QKD)结合一次一密的加密方式, 可以实现无条件安全的量子

通信 . 双场 (twin-field, TF) QKD和测量设备无关 (measurement-device-independent, MDI) QKD具有较高的

安全性, 同时适合构建以测量端为中心的网络, 具有广阔的应用前景. 但在实际应用过程中, 参数配置对 QKD

性能有着极大影响, 而实际场景中存在着用户数量大、位置距离中心站点非对称、并且用户大部分处在实时

移动中的特点. 面对上述实时的参数配置需求, 传统的参数优化方式将无法满足. 本文提出将监督机器学习

算法应用于 QKD参数优化配置中 , 通过机器学习模型预测不同场景下 TF和 MDI两种常用协议的最优参

数. 将神经网络、最近邻、随机森林、梯度提升决策树和分类回归决策树 (classification and regression tree, CART)

等监督学习模型进行对比, 结果显示 CART模型在   等回归评估指标上均有最优表现. 在随机划分训练组、

验证组情况下, 预测参数的密钥率与最优密钥率比值的均值在 0.995以上; 在“超精度”和“超范围”两种极限

情况下, 该均值仍能维持在 0.988左右, 且在残差分析中具有较好的环境鲁棒性, 展现出较好的性能. 此外, 基

于 CART的新方案相较于传统方案在计算实时性表现上有很大提升, 将单次预测时间缩短至微秒量级, 很好

地满足了通信方在移动状态下的实时通信需求.
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 1   引　言

量子通信的根本目标是使共享不安全信道的

合法通信方 (Alice和 Bob)在窃听者 (Eve)存在的

条件下依然能够进行信息的安全传输. 作为一种理

论上无条件安全的密钥分发技术, 量子密钥分发

(quantum key distribution, QKD)技术被广泛应用

于量子保密通信中 [1,2], 其安全性由“量子态不可克

隆定律”、“测量塌缩定理”和“海森伯不确定性原理”

等量子力学基本定律保证 [3−5]. 第一个 QKD协议

是由Bennett和Brassard[6] 于 1984年提出的BB84

协议, 在理想状态下 BB84协议中信息载体是单个

光子, 但是在实际应用中, 单光子源难以完全实现,

故实验中大多采用弱相干光源 [7], 这就使得窃听者

(Eve)可以使用光子数分离法 (PNS)进行攻击 [8,9].

此外, 窃听者还有可能攻击探测端的测信道漏洞 [10].

为了免疫所有探测端的可能攻击, 2012年 Lo等 [11]

和 Braunstein等 [12] 各自独立地提出了测量设备无

关量子密钥分发 (measurement-device-independent
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QKD, MDI-QKD)协议. 2018年 Lucamarini等 [13]

提出了双场量子密钥分发协议 (twin-field QKD,

TF-QKD), 不仅保留了 MDI-QKD的测量设备无

关特性, 而且消除了实际应用中 MDI-QKD协议

密钥率受统计起伏影响较大的特性, 并打破了无中

继量子信道码率-距离限制 (PLOB界)[14−16], 提升

了 QKD的实用性.

在量子通信实际应用过程中, MDI-QKD系统

一般采用星状网络进行连接 [17,18] (图 1), 而 TF-

QKD和 MDI-QKD协议也正满足这一特性, 在应

用中可以将昂贵的测量设备放置在中心站点, 通信

双方只需要持有造价便宜且相对便携的发送设备

即可完成密钥分发过程.
 
 

图 1    MDI-QKD系统示意图

Fig. 1. Schematic diagram of MDI-QKD system.
 

在量子密钥分发之前, 需要对不同协议 (TF-

QKD或 MDI-QKD)的参数 (如强度、选择概率

等)配置进行优化 [19,20], 从而使通信方能获得相应

条件下的最高密钥生成率. 传统的参数配置优化方

案一般使用遍历搜索算法或局域搜索算法 (LSA)[21],

传统方案需要计算大量的数据, 容易造成计算资源

和计算时间的浪费, 无法满足量子通信系统对实时

性的需求. 近年来随着机器学习领域的快速发展,

将机器学习用于 QKD参数预测成为研究热点 .

2018年, Liu等 [22] 首次将机器学习模型应用于连续

变量 QKD系统, 并提出了一种基于支持向量回归

(SVR)算法的参数预测模型. 2019年, Wang等 [23]

在低功耗设备上测试了用于 QKD参数优化的机

器学习算法证明了机器学习模型在低功耗量子通

信终端上的适用性. 同年, Lu等 [24] 使用反向传播

人工神经网络实现了 MDI-QKD网络的参数优化

与实时标定. 2022年, Chen等 [25] 将随机森林 (rand-

om forest, RF)模型应用于对称信道量子通信资

源优化, 减小了传统方案的时间损耗. 在实际应用

场景中, 通信双方一般具有较强的可移动性, 且

信道处于非对称状态, 预测参数数量倍增, 因此

QKD系统在通信实时性上提出了更高的要求. 为

了更好地满足实时通信的需求, 本文将多种监督机

器学习算法与传统参数优化方案结合, 通过前期采

集的数据对机器学习模型进行训练, 最终建立适用

于用户处在非对称情况的最优参数预测模型. 本文

的仿真结果表明在保证有效密钥率的情况下, 与传

统方案对比, 采用机器学习的最优参数预测方案极

大地缩短了参数配置所需时间, 在实际 QKD系统

中应用前景广阔.

 2   数据格式及特征数据获取

为了获得更高的安全密钥率, 本文使用监督学

习的方法构建机器学习模型. 监督学习是机器学习

的一个子领域, 监督学习过程需要使用带有正确答

案的数据集训练已有算法, 最终获得有数据预测功

能的函数 [26]. 下面以QKD系统中可能用到的MDI-

QKD和 TF-QKD协议为例, 介绍训练数据集的输

入、输出数据格式及相应数据的获取.

 2.1    输入特征数据格式

L

∆L ed η

N Y0

X = [L, ∆L, Y0, η, ed, N ]

在 QKD系统的工作过程中, 安全密钥率 (R)

的大小与系统自身参数有密切关系, 在用户处于非

对称的情况下, 影响因素主要包括: 短距离通信方

到测量站点的距离  , 通信双方到测量站点的距离

差  , 本底误码率  , 探测效率  , 通信方发送的

光脉冲数   和暗计数率   . 将系统参数组合成一

个六维向量   , 并令其作

为模型训练数据集的输入数据格式, 然后根据实际

情况给输入数据划分了相应的范围 (TF-QKD情况),

见表 1.

表 1    系统参数范围
Table 1.    System parameter range.

参数 L  /km ∆L  /km N η Y0 ed 

范围 0—300 0, 25, 50, 75, 100 109—1014 0.1—0.9 10–11—10–6 0.01—0.10
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ed

以等间隔取值对所有训练数据进行划分, 最终

得到的 TF-QKD协议待优化数据近 105 组; MDI-

QKD除本底误码率   取值范围变为 0.1—0.5外,

其余处理与 TF-QKD协议相同, 同样得到近 105

组待优化数据.

L

∆L ed

需要特别说明的是, 本文聚焦于系统中收发端

的状态, 而将信道特性归为衰减 (由距离  及距离

差   表征)与本底误码率   . 故未特别区分光纤

信道与自由空间信道, 对于自由空间信道中的湍流

等参量带来的影响则归于额外的衰减与本底误码

率的增大 [27], 以保证模型的普适性.

 2.2    输入标签数据格式

µ1 µ2 υ1 υ2 ω1 ω2

Pµ1 Pµ2

Pυ1 Pυ2 Pω1 Pω2

ε1 ε2

YTF = [µ1, υ1, ω1, Pµ1, Pυ1, Pω1, ε1, µ2, υ2, ω2,

Pµ2, Pυ2, Pω2, ε2]

ε

YMDI = [µ1,

υ1, ω1, Pµ1, Pυ1, Pω1, µ2, υ2, ω2, Pµ2, Pυ2, Pω2]

在非对称信道 MDI-QKD和 TF-QKD协议

中, 本文根据不同协议的原理及其使用的诱骗态方

法确定输入标签数据的格式. 其中 TF-QKD协议

使用四强度诱骗态方法 [28], 在密钥分发过程中需

要优化的配置参数包括: 通信方 Alice (Bob)的信

号态强度   (  )、 诱骗态强度   (  )和   (  )、

信号脉冲的发送概率   (  )、 诱骗态脉冲的发

送概率  (  )和  (  ), 以及 Z 窗口下的发送

概率  (  ). 最终, 将这些配置参数组合成标签向

量  

 ; MDI-QKD协议使用四强度诱

骗态方法 [29], 其配置参数相较于 TF缺少了 Z窗

口下的发送概率  . 类比 TF-QKD协议的定义方式,

MDI-QKD协议的输入标签向量定义为 

 .

相较于对称信道的方案 [20,25], 非对称信道 QKD

系统面对的待优化参数倍增, 预测难度加大. 此

外, 由于 MDI-QKD协议和 TF-QKD协议在实现

难度上各有优缺点, 故不放在一起进行密钥率的

评估.

 2.3    训练集数据的获取

输入特征数据和输入标签数据统称为输入数

据集, 使用 LSA算法为每一组输入特征数据计算

相应的标签数据, 并作为相应条件下的最优参数配

置, 随后对所有数据进行了归一化处理. 以较为复

杂的 TF-QKD情况为例 , 优化过程的具体说明

如下. 这是一个非线性单目标优化问题 [21], 可以表

示成: 

maxRTF = f(µ1, υ1, ω1, Pµ1, Pυ1, Pω1, ε1,

µ2, υ2, ω2, Pµ2, Pυ2, Pω2, ε2)

s.t.



P01 + Pµ1 + Pυ1 + Pω1 = 1,

P02 + Pµ2 + Pυ2 + Pω2 = 1,

υ1 > ω1 > 0,

υ2 > ω2 > 0,

(1)

RTF

P01 P02

其中,    为 TF-QKD协议下系统的通信密钥率,

 (  )为 Alice (Bob)发送光强为 0的概率.

对于该多维的优化问题 , 本文将之转化成

14个一维优化问题, 再由约束条件及变量间关系

进行进一步简化. 对上述一维优化问题使用经典的

搜索算法找到局部最优解 [21]. 随后, 循环多次以确

保结果接近全局最优解.

RTF

对于局部搜索算法, 初值的选择尤为重要. 对

此本文的处理方法是: 经验赋值与参数继承相结

合. 首先, 根据实验经验给出一组满足约束条件的

标准值, 以这一标准值作为第一组参数的初值. 随

后, 用已得到的有效结果 (满足约束且密钥率  

在合理范围)作为后续情况的初值; 对于无效结果,

则用标准初值作为后续情况的初值. 需注意的是,

每次优化的输入参数与要继承参数对应的输入

参数有且只有一位发生改变, 使得初值设置尽可能

合理.

 3   机器学习方案选择

R2 R2

本节首先将数据集标准化后随机划分为 70%

的训练集和 30%的验证集, 随后选取了 3种不同

类别的常用监督学习算法, 并使用训练集的数据对

相应算法进行训练. 在获得训练完成的模型后, 将

验证集的数据带入并计算不同算法中各个参数的

 , 通过综合比较  的大小初步选定了决策树作

为本文参数配置优化的监督学习算法类别. 最后使

用分类回归决策树 (classification and regression

tree, CART)算法构建了回归决策树.

 3.1    常用监督学习算法选择

选取了监督学习中常用的决策树算法、神经

网络算法和 K-最近邻算法 (K-nearest neighbor,

KNN)等 3种算法进行初步比较, 其中决策树算法

是通过训练生成一种树形结构, 其中每个内部节点

表示一个属性上的判断值, 每个分支代表一个判断
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R2

结果的输出, 最后每个叶节点代表一种输出值 [30].

神经网络是一种模仿生物神经网络结构和功能的

计算模型, 常用于对函数进行估计或近似 [31]. KNN

算法是通过判断输入数据与已有数据的距离大小

来决定输出值的模型. 这 3种算法代表了监督学

习的几个不同方向, 以 TF-QKD为例, 在数据集

随机划分为 70%的训练集和 30%的验证集情况

下 (下文简写为“标准情况”), 不同算法对验证集输

出参数的决定系数  如图 2所示.
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R2图 2    不同类别监督学习算法   比较

Fig. 2. Comparison  of R2  of  supervised  learning  algorithms

in different categories.
 

R2

R2 R2

通过对决策树、神经网络与 KNN算法各个预

测参数   的比较, 发现决策树算法各个预测参数

的  和整体  均远高于其他两种类型的算法, 对

应残差分析如图 3—图 5所示.
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图 3    标准情况决策树模型残差图

Fig. 3. Decision tree model residual plot for standard cases.
 

图 5橙色点是训练集的残差分布图, 绿色点是

验证集的残差分布图. 从图 5可知, 决策树模型拥

有较强的环境鲁棒性, 且过拟合现象不明显. 另两

种模型残差虽与预测值本身相关性较小, 环境鲁棒

性同样较好, 但残差绝对值较大, 本文认为在实际

系统中是不可接受的. 最后, 各方案时间消耗见表 2.
 
 

表 2    不同方案时间消耗对比

Table 2.    Comparison  of  time  loss  between  different

schemes.

协议 决策树/s 神经网络/s KNN/s 传统/h

TF-QKD 0.713 0.825 1.509 163

MDI-QKD 0.608 0.710 1.301 116
 
 

由于决策树模型的单次计算时间在微秒量级,

为了更清楚地展示新方案和传统方案的区别, 对结

果进行了放大处理, 即使用同一计算机 (硬件配置:

Intel(R) Core(TM) i7-10750 H CPU @ 2.60 GHz,
RAM: 16 GB DDR4 2933 MHz)分别通过不同方

案计算多组数据后统计所需时间, 其中 TF-QKD

协议共计算有效数据 55063组, MDI-QKD协议共

计算有效数据 43741组, 由表 2可知, 决策树模型

的时间开销最小. 综上所述, 决策树算法对本文所

做工作有更好的适用性. 接下来将构建相应的回归

决策树.

 3.2    决策树的构建过程

CART算法是一种既能解决离散型分类问题
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图 4    标准情况神经网络模型残差图

Fig. 4. Neural  networks  model  residual  plot  for  standard

cases. 
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图 5    标准情况 KNN模型残差图

Fig. 5. KNN model residual plot for standard cases. 
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又能解决连续型回归问题的决策树算法 , 最初

由 Breiman[32] 于 1984年提出. CART回归算法采

用平方误差最小化原则选取数据特征, 通过对数

据特征的划分建立二叉决策树模型, 最后对生成

的决策树进行剪枝处理, 构造出具有泛化和预测能

力的回归决策树 [33]. 下面开始构建 CART回归决

策树.

 3.2.1    数据空间划分及决策树生成

j

x(j) s

对于 CART回归决策树的划分, 采用启发式

的方法. 首先随机选择训练集特征数据的第  个变

量   作为切分变量, 以该变量的取值   作为切分

点, 将数据集切分成两个区域: 

R1(j, s) = {x|x(j) ⩽ s},

R2(j, s) = {x|x(j) ⩾ s}, (2)

c1 c2每个区域的输出预测值  和  分别为 

cm =
1

Nm

∑
xi∈Rm(j,s)

yi (m = 1, 2), (3)

yi Nm

j s

其中   是当前区域第 i 组训练数据的最优值,   

是区域内数据量. 然后对变量和切分点的选取做优

化, 通过对  和  的不同取值组合遍历, 使得各个区

域的误差平方和最小: 

min
j,s

 ∑
xi∈R1(j,s)

(yi − c1)
2
+

∑
xi∈R2(j,s)

(yi − c2)
2

 ,

(4)

j s选取此时的  和  作为切分变量和切分点 [34,35].

对划分后的区域重复上述步骤, 进行多次最优

切分, 最终形成一棵完整的决策树.

 3.2.2    剪　枝

Er(t)

Er(Tt)

Er(t) < Er(Tt)

为了防止决策树出现过拟合的情况, 对决策树

进行最小误差剪枝 (minimum error pruning, MEP),

MEP是一种自下而上的剪枝方法 [36], 对于已获得

决策树的每个非叶子节点, 首先计算该节点的误差

 , 然后计算该节点下所有叶子结点的误差

 加权和, 其权重为该节点覆盖的训练样本数

量的比例. 如果该子树满足  , 则剪去

该子树, 否则保留. 节点误差的计算公式为 

Er(t) =
N∑
i=1

|yi − ci|. (5)

最后判断所有节点是否都通过测试, 完成剪枝.

 3.2.3    输出值预测

在完成决策树的构建和剪枝后, 输入验证集数

据可获得对应的输出预测结果: 

f(x) =

M∑
m=1

cmI, (6)

f(x) I其中,   为预测输出值,   为指示函数, 表示为 

I =

{
1, x ∈ Rm,

0, x /∈ Rm.
(7)

图 6为 CART决策树构建流程图. 最终, 基于

这 一 思 路 使 用 Sklearn库 中 的 Decision  Tree

Regressor函数训练决策树, 训练参数包括: 树的最

大深度“max_depth”为 36, 拆分内部节点所需的

最小样本数“min_samples_split”为 2, 叶节点所

需的最小样本数“min_samples_leaf”为 1, 损失函

数 criterion选用“squared_error”.
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图 6    CART构建过程

Fig. 6. CART construction process. 
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 4   结果和讨论

 4.1    基础结果呈现

首先检验上述决策树模型“标准情况”下的表

现. 为此, 引入回归模型中常见的 3种评价指标,

对 TF-QKD协议和 MDI-QKD协议数据训练出

的决策树模型分别进行评价.

均方误差 (mean squared error, MSE)用于计

算预测结果与最优结果误差平方和的均值, 其取值

越小说明模型性能越强, 计算公式为 

MSE =
1

N

N∑
i=1

[yi − f(xi)]
2
. (8)

平均绝对误差 (mean absolute error, MAE)常用

于计算模型预测结果与最优结果误差平均值, 其取

值越小说明模型对数据的拟合效果越好, 表达式为 

MAE =
1

N

N∑
i=1

|yi − f(xi)|. (9)

决定系数 (coefficient of determination, R2)是模

型预测结果准确程度的指标, 可表示为 

R2 = 1−
N∑
i=1

[yi − f(xi)]
2

/ N∑
i=1

(yi − ȳi)
2
. (10)

N

f(xi) yi

ȳi =
1

N

∑N

i=1
yi

R2 取值范围为 0—1, R2 越接近于 1, 说明模型的

预测效果越好, 越接近于 0, 说明模型的预测效果

越差. 在 (8)式—(10)式中,   表示测试数据集的

数量,    为模型预测结果,    为对应的最优结

果,   为验证集最优结果的均值. 标

准情况下验证集的各个回归指标计算数值展示在

表 3中.
 
 

表 3    标准情况下模型结果评估

Table 3.    Evaluation of the results under standard condi-

tions.

协议 R2 MAE/10–3 MSE/10–5

TF-QKD 0.9916 3.42 8.05

MDI-QKD 0.9993 0.37 1.70
 
 

由表 3可知, 在标准情况下, 以 CART算法构

建的回归模型在预测验证集数据时效果较为理想.

这说明对于 QKD系统中可能用到的不同 QKD协

议, 对应决策树模型均能较好完成其最优参数的预

测. 接下来, 使用预测得到的配置参数分别计算两

协议的预测密钥率, 并与已知最优密钥率相比得到

结果如图 7和图 8所示.
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图 7    TF-QKD模型比例柱状图

Fig. 7. Model scale histogram of TF-QKD.
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图 8    MDI-QKD模型比例柱状图

Fig. 8. Model scale histogram of MDI-QKD.
 

RRt

RLSA

RRt RLSA

RRt RLSA

图 7和图 8中  是通过决策树模型输出参数

计算出的通信密钥率,   是 LSA算法计算出的

最优密钥率 (需要特别说明的是: 对于   > 

的情况, 认为其满足最优情况的定义, 取  /  =

1. 下文中均采取相同操作不再做特殊说明). 通过

图 7和图 8可知, 在标准情况下, 通过决策树模型

预测参数计算出的密钥率与传统方法得到的最优

密钥率较为接近, 密钥率比值的均值在 0.995以上.

说明在标准情况下, 决策树模型在非对称信道QKD

系统优化参数配置这一应用场景下性能优异.

 4.2    方案的实用性

下面要验证决策树模型在常见的两种不同场

景下的实用性: 场景一是由于训练集过小导致输入

数据超过训练集范围, 下文简称“超范围”; 场景二

是由于训练集的精度过低导致输入数据在训练集
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范围内但是没有对应数据, 下文简称“超精度”. 这

两种场景在实际使用中经常发生, 都要求建立的模

型具有一定的预测能力. 为了验证决策树模型这两

种常见情况下的实用性, 计算了这两种情况下 3种

不同的评价指标, 并且更深入地比较了决策树模型

和基于决策树的集成模型的优劣.

参与对比的决策树集成模型有 RF模型和

梯度提升决策树 (gradient boosting decision tree,

GBDT)模型. RF模型和 GBDT模型都是以决策

树为基础集成而来, 可视为多棵决策树的集合, 不

同之处在于 RF模型的决策树是由多次取出并放

回的抽样数据形成, 每棵树的权重相同, 而 GBDT

是在上一棵树的残差基础上迭代生成, 每棵树权重

不同. 为了比较模型和超范围参数预测时的效果,

依旧以回归模型中常见的 3种评价指标对 RF、决

策树和 GBDT模型进行比较和分析. 以 TF-QKD

为例, 将验证集的各个回归指标计算数值展示在

表 4中.
  

表 4    不同使用场景模型结果评估
Table 4.    Evaluation  of  the  results  of  different  usage

scenarios.

模型 R2 MAE/10–2 MSE/10–4

超范围

决策树 0.9529 1.64 8.75

RF 0.9494 1.68 9.12

梯度提升 0.8579 2.76 40.0

超精度

决策树 0.9659 1.14 3.52

RF 0.9654 1.15 3.54

梯度提升 0.9154 1.94 8.74

注: 粗体数据为该指标最好的结果.
 
 

R2

由表 4可知, 在相同训练集的训练下, 决策树

模型在 MSE, MAE和   等性能指标上的表现都

优于其他模型, 这说明基于决策树的模型相较于集

成模型在不同的场景中都有更好的适应性, 也证明

了本文选择决策树模型的正确性. 下面计算回归决

策树模型和 RF模型在 TF-QKD协议处于超精度

状态下的预测结果密钥率和最优结果密钥率比值

分布柱状图, 如图 9和图 10所示, 能更清晰地比

较两者差别.

RRt RRF

RLSA

图 9和图 10中   和   是验证集分别通过

决策树模型与RF模型计算出来的通信密钥率,  

是 LSA算法计算出的最优密钥率. 通过图 9和图 10

的对比可以发现, 回归决策树模型在相同验证集下

的密钥率更接近最优密钥率, 这说明决策树模型在

决策精度上略好于 RF模型, 对此我们探究了深层

原因并做出如下解释. 由图 11和图 12残差分析可

知: 回归决策树模型的鲁棒性较好, 过拟合情况较

少. 在这种情形下, RF模型较普通决策树模型的

优势被削弱, 而单决策树模型对数据特征的训练更

加充分. 故本文中决策树模型效果略好于 RF模

型. 最后将使用机器学习模型和使用传统 LSA算

法获得参数配置优化结果所需时间记录于表 5.
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图 9    回归决策树模型比例柱状图

Fig. 9. Regression decision tree model scale histogram. 
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图 10    RF模型比例柱状图

Fig. 10. Random forest model scale histogram. 
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图 11    超精度情况决策树模型残差图

Fig. 11. Decision  tree  model  residual  plot  for  super-preci-

sion cases. 
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在软硬件条件与前文相同的条件下, 分别通过

不同方案计算多组数据后统计所需时间, 其中 TF-

QKD协议共计算数据 55063组, MDI-QKD协议

共计算数据 43741组. 结果表明在保证安全密钥率

的前提下, 决策树模型极大地降低了传统方案需要

的时间损耗, 这表明决策树模型能够很好的实现多

用户实时进行量子通信的目的.

为了验证决策树模型的环境鲁棒性, 构建了决

策树和 RF在超精度应用场景下的可视化残差图,

如图 11和图 12所示. 图 11和图 12中橙色点是训

练集的残差分布图, 绿色点是验证集的残差分布

图. 可知验证集的残差大部分在 0.08以下且与预

测值本身相关性较小, 这进一步说明了本文决策树

模型拥有较强的环境鲁棒性, 且通过和 RF残差图

的对比可说明决策树模型的过拟合现象不明显.

 5   总结和展望

本文提出了基于回归决策树的非对称信道场

景下 MDI-QKD系统优化参数配置方案. 与使用

搜索算法的传统方案相比, 本文的方案大幅度缩短

了获得参数配置所需时间, 减少了时间资源和计算

资源的消耗, 残差分析也证明决策树方案有较好的

稳定性. 此外, 介绍了决策树方案的生成过程, 并

展示了多个回归模型的效果对比, 最终发现在实际

应用场景中, CART模型相较于 KNN和 RF等模

型的效果最佳, 且预测数据所得的密钥率与使用

LSA方式得到的最优密钥率比值的均值在 0.995

以上. 同时, 在“超范围”和“超精度”两种极限条件

下, CART模型在维持良好鲁棒性的同时, 预测参

数计算得到的密钥率与最优密钥率比值的均值仍

维持在 0.988左右, 能较好满足实际通信需要. 可

见本文构建的决策树模型在保证密钥分发速度的

条件下, 以较低的算力和时间成本完成 QKD参数

配置. 综上所述, 本文对非对称信道MDI-QKD系

统的实现有重要意义.

QKD分为两类, 即离散变量 DV-QKD和连

续变量 CV-QKD. 本文主要聚焦于 DV-QKD的各

项参数优化, 近年 CV-QKD的发展同样迅速. CV-

QKD的高密钥速率和与标准通信组件的出色兼容

性使得其在未来 QKD系统中同样拥有广阔的应

用前景 [37]. 学界近年也做出了许多将机器学习模

型运用于 CV-QKD系统参数预测的尝试, 能够利

用机器学习模型较好完成系统密钥率的计算及参

数估计 [22,38−40]. 上述案例证明了将机器学习用于

CV-QKD系统参数预测的可行性. 虽然 CV-QKD

系统拥有参数数量众多等特性 [41], 但依靠决策树

模型的多输入-多输出特性及较强的普适性, 只要

训练参数取值范围恰当且数量足够, 本文方案将能

够用于 CV-QKD系统参数预测. 本文方案在 CV-

QKD系统中的运用是我们未来的潜在研究方向和

应用场景.
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表 5    不同方案时间消耗对比
Table 5.    Comparison of  time  loss  between   differ-

ent schemes.

协议 RF/s 决策树/s 梯度提升树/s 传统/h

TF-QKD 1.426 0.713 6.748 163

MDI-QKD 1.221 0.608 5.631 116
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Abstract

The parameter configuration of quantum key distribution (QKD) has a great effect on the communication

effect, and in the practical application of the QKD network in the future, it is necessary to quickly realize the

parameter  configuration  optimization  of  the  asymmetric  channel  measurement-device-independent  QKD

according to the communication state, so as to ensure the good communication effect of the mobile users, which

is an inevitable requirement for real-time quantum communication. Aiming at the problem that the traditional

QKD  parameter  optimization  configuration  scheme  cannot  guarantee  real-time,  in  this  paper  we  propose  to

apply the supervised machine learning algorithm to the QKD parameter optimization configuration, and predict

the  optimal  parameters  of  TF-QKD and  MDI-QKD under  different  conditions  through  the  machine  learning

model.  First,  we  delineate  the  range  of  system  parameters  and  evenly  spaced  (linear  or  logarithmic)  values

through  experimental  experience,  and  then  use  the  traditional  local  search  algorithm  (LSA)  to  obtain  the

optimal parameters and take them as the optimal parameters in this work. Finally, we train various machine

learning  models  based  on  the  above  data  and  compare  their  performances.  We  compare  the  supervised

regression learning models such as neural network, K-nearest neighbors, random forest, gradient tree boosting

and classification and regression tree (CART), and the results show that the CART decision tree model has the

best  performance in the regression evaluation index,  and the average value of  the key rate  (of  the prediction

parameters)  and  the  optimal  key  rate  ratio  is  about  0.995,  which  can  meet  the  communication  needs  in  the

actual environment. At the same time, the CART decision tree model shows good environmental robustness in

the residual analysis of asymmetric QKD protocol. In addition, compared with the traditional scheme, the new

scheme based on CART decision tree greatly improves the real-time performance of computing, shortening the

single prediction time of the optimal parameters of different environments to the microsecond level, which well

meets the real-time communication needs of the communicator in the movable state. This work mainly focuses

on the parameter optimization of  discrete variable QKD (DV-QKD). In recent years,  the continuous variable

QKD (CV-QKD) has developed also rapidly. At the end of the paper, we briefly introduce academic attempts of

applying machine learning to the parameter optimization of CV-QKD system, and discuss the applicability of

the scheme in CV-QKD system.
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