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Fig. 1. Schematic diagram of MDI-QKD system.
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2.1

*1 ARHESHH
Table 1.  System parameter range.
S8 L /km AL /km N n Yo eq
I 0—300 0, 25, 50, 75, 100 10°—10" 0.1—0.9 10 1—10° 0.01—0.10
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Fig. 2. Comparison of R? of supervised learning algorithms

in different categories.
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Fig. 3. Decision tree model residual plot for standard cases.

K 5 B R I GRS 22 A R, S niJe:
B e AR 25 0 A . AL 5 RIRN, DR SRR S TR 4
AEER I EPEIE, HE PSR AW, 55
PR 5% 22 B 5 TUM(EAS B AR MR, SR
PRI RERCAF, (RFR A REBR, A SCAATESL PR
RGEHIEANIEZ . ), 2577 R REFE L 2.

Predicted values

Bl 4 BRI 1O i 22 O 45 A TR T 2 [
Fig. 4. Neural networks model residual plot for standard

cases.
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Fig. 5. KNN model residual plot for standard cases.
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Table 2. Comparison of time loss between different

schemes.
TF-QKD
MDI-QKD

A /s
0.713
0.608

Z L /s
0.825
0.710

KNN/s f4%i/h
1509 163
1.301 116
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P A BB 55063 41, MDI-QKD #pid 3t
THEARCEE 43741 4, HH 3R 2 T, DRSR R A
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Fig. 6. CART construction process.
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Regressor PRECIIZRER, VRS EELHE: MR
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PR SRR 43 A T PEAY
¥ J71% 2 (mean squared error, MSE) it
ST 25 55 B LAl SRR 25y PR I, FEUE
N 2 N il L S = R/ W

1 N 2
MSE = N ; [y: — f(x)]”. (8)

4 X iR 2% (mean absolute error, MAE) # H
TR TN 45 R 5 e U2 SRR 22, R
(EDB/ DN IR RS S 1) 1005 R, k0l

N

MAE = %Zly — fi)l. 9)

i=1
PesE R AL (coefficient of determination, R?) J& 1%
RN 235 SRR L B 1 Fa bR, TR R

N

RZ=1- Z [y; — f(xi)}Q/Z (yi — %)% (10)

=1

R RS 01, R BAEIE T 1, BLOTBLAY
BRI, e T 0, DAL 0 BRI R
W2 7E (8) X (10) Refr, VAR Y
MOk, () B BURIBRIGS BE, 3 6610 A
Bogi= Y u AR A R,
BT AR 264 96 650 R 1
%37k,

#3 BRI OB

Table 3.  Evaluation of the results under standard condi-

tions.
s R? MAE/103 MSE/10°®
TF-QKD 0.9916 3.42 8.05
MDI-QKD  0.9993 0.37 1.70

HIZ% 3 Al FERRMERSOL T, LA CART B4y
S 14 [ DA 0000 56 T A 50 R S8R5 A B
XULAXTT QKD R Gl e B A R QKD P
L, KT IRE R T BER 58 I H A S R 13
D). 7R ke, o RIS 2 A I B S R0l TR

RS TIN5 EHR , I-5 B et 3 8 R A0 L A5 3]
ZERANPE 7 FIE 8 iR,

1.0

Mean: 0.9959
091 Var: 0.0002
0.8
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Fig. 7. Model scale histogram of TF-QKD.
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Fig. 8. Model scale histogram of MDI-QKD.
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0 AL A R I B, T SRR R R IX
PRI S e SE PRl h 2 R AR, BB SR T (A
RUEA —E TN RE . o8 T ik SRR A A 5 7
Fh AR OO SR, T T X AESL T 3 Ff
AFEEPER AR R, - H TR A M HLAS T PSR A 1A
FIHE T ISR 2 AU L 45

Z: 5% WY P SR AR B AL RF 58
TR TR (gradient boosting decision tree,
GBDT) #i 1. RF #&AIF1 GBDT R AIHE DL 5
R AR BT SR, AT ZRRUCRIM IS, A
[ Z Ab7E T RF 580 B P SRR 2 i 2 B I 7
8] (R AR R 18, B AR A AR [H], T GBDT
JEAE b — R P 5k 22 5Ll 1 R AAE N, R RRRA R
ANTA]L SRy T P A ASE L R Y1 R 2 B8N I Fr 28R
WRIHLA RN R g WA 3 RPN FE FRxt RF |
FRA GBDT BARLEAT LA 234, L TF-QKD
S, K B S A 1T S 48 A TR R s A
4 rh,

B4 R R R

Table 4. Evaluation of the results of different usage

scenarios.

17y R2 MAE/102  MSE/10*
PSR 0.9529 1.64 8.75
faRle il RF 0.9494 1.68 9.12
BEERTE  0.8579 2.76 40.0
TRIFEARS 0.9659 1.14 3.52
AR RF 0.9654 1.15 3.54
FEEESRTE  0.9154 1.94 8.74

TE: HUABR A Z 8 b i i 21

M5 4 AL EA IR E RIS, Yokt
BRI MSE, MAE Hil R %64 REF8 An I i R ILER
P F AR 3 U8B PR AR R AR 4
AR TR A AN [R) P 3 S5 P oA S A A o, L TE B
T APPSR AR A IE R . R TR [l 5 e
SRR RF BERI/E TF-QKD DAL Tk
ARZSTF A TN 25 SR B R B AR A5 R PR LU
Ay AAEAR L, AN 9 FNE 10 7R, A 7 B L
Wi 220,

9 FE 10 H Ree A1 RS2 50 30E £ 49 91 18 1o
PRI REF SRR IRE 3R, Risa
& LSA BRI MR iRt 280, it &l 9 gl 10
(R AT DA B, T U R SR AR A A A [ 90 4 T
R B BH R T I R L B3R, X Ul B PSR R AR R 7
PEFRG L LI T RF AL XL RATIR ST TIR)2

JE PRI AT AR, s 11 FNIEL 12 B Ar el
R o] U e SRR R (1 AR A, S UL R AR
D AEXFEIE T, RF BRI i P S A Y (1
DU 55, 17 DR SRR AR K R Ak (4 R
INFESr . HOAS SO B S T AR 4 T RF L
B d e R 0 FIAILAS o7 ) RN AL 4 LSA 57
EAAFSHC A AL A R raa I AE 5 T3 5.
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Fig. 9. Regression decision tree model scale histogram.
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Fig. 10. Random forest model scale histogram.
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Fig. 11. Decision tree model residual plot for super-preci-

sion cases.
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Fig. 12. RF model residual plot for super-precision cases.
5 AR EREFEXT

Table 5.  Comparison of time loss between differ-

ent schemes.
Iighe RF/s RHEM /s BEEEARTH /s f£%4¢/h
TF-QKD 1.426  0.713 6.748 163
MDI-QKD 1.221  0.608 5.631 116
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Abstract

The parameter configuration of quantum key distribution (QKD) has a great effect on the communication
effect, and in the practical application of the QKD network in the future, it is necessary to quickly realize the
parameter configuration optimization of the asymmetric channel measurement-device-independent QKD
according to the communication state, so as to ensure the good communication effect of the mobile users, which
is an inevitable requirement for real-time quantum communication. Aiming at the problem that the traditional
QKD parameter optimization configuration scheme cannot guarantee real-time, in this paper we propose to
apply the supervised machine learning algorithm to the QKD parameter optimization configuration, and predict
the optimal parameters of TF-QKD and MDI-QKD under different conditions through the machine learning
model. First, we delineate the range of system parameters and evenly spaced (linear or logarithmic) values
through experimental experience, and then use the traditional local search algorithm (LSA) to obtain the
optimal parameters and take them as the optimal parameters in this work. Finally, we train various machine
learning models based on the above data and compare their performances. We compare the supervised
regression learning models such as neural network, K-nearest neighbors, random forest, gradient tree boosting
and classification and regression tree (CART), and the results show that the CART decision tree model has the
best performance in the regression evaluation index, and the average value of the key rate (of the prediction
parameters) and the optimal key rate ratio is about 0.995, which can meet the communication needs in the
actual environment. At the same time, the CART decision tree model shows good environmental robustness in
the residual analysis of asymmetric QKD protocol. In addition, compared with the traditional scheme, the new
scheme based on CART decision tree greatly improves the real-time performance of computing, shortening the
single prediction time of the optimal parameters of different environments to the microsecond level, which well
meets the real-time communication needs of the communicator in the movable state. This work mainly focuses
on the parameter optimization of discrete variable QKD (DV-QKD). In recent years, the continuous variable
QKD (CV-QKD) has developed also rapidly. At the end of the paper, we briefly introduce academic attempts of
applying machine learning to the parameter optimization of CV-QKD system, and discuss the applicability of
the scheme in CV-QKD system.
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parameter optimization
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