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Table 1. Practical parameters for numerical simulations.

na/%  eq/% Yo fe
14.5 1.5 6.02x10-% 1.16 10~7 102 0.21

X N a

4.1 EHERE R DA
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K1 A A i oRINER F (0, 1, 22) K
T 0. /T 0 PAMEDL. 455 BoR, JoieFI AR
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B b, e ) pR BRI AR R T 0 A/ NT 0 1Y
L. BAREAELLT 4440 (36 2). R 2 W] LITE
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Table 2. Four points which can be used to discrim-

inate the key rate is non convex function.

ZH 1 T2 T3 T4
m 0.40 0.60 0.50 0.075
v 0.037 0.045 0.029 5.9%x1073

w 7.9%x107% 2.6x1073 2.0x1073 2.57x10~*

P, 0.15 0.48 0.54 0.020
P, 0.18 0.13 0.26 0.48
Py 0.8 0.14 0.76 0.14
I 0.92 0.56 0.89 0.64
Pyl 0.25 0.99 0.54 0.55
0 0.47 0.64
F(0,z,y) —5.50 x 106 3.84 x 1076

4.2 LSA EEmsRmiiHE
a2 2 W A A SAE R ERE, R LSA
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Analytical method
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Numerical method
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Fig. 1. Values of convex discriminant function of F (0, a1, @2) with 10 thousand random input variables.
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Fig. 2. Curves of key rate versus each parameter of the input.
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SR, BRI LSA A A A R R, Fris
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B AR, Wil 1T LSA Bk A &3 i 90 6
(B, PRI 4 Ry e L.

4.3 LSA EEFHBER K
LSA 4k %40 4 1 ELAT B0 p AR ik, 152
XEARRIWIGR B T, 45 LSA B ik s %4 4
RCRVEREDEAT HLA /0 HT. ARYE SCRik [14] FR ARSI 22
A, A ERTER TR
z1 = [0.5,0.1,0,0.33,0.33,0.5,0.5,0.5],
@5 = [0.21,0.06,0,0.33,0.33,0.5,0.5,0.5],

x3 = [0.25,0.05,107°,0.58, 0.30, 0.03,0.71,0.83] .

5 =
PS4 RN 3 iR,

10-3
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- - - Start_with_x»
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1075
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g ‘
5, 1079
)
b4 .
—7Tk N
10-7 N
|
10-8¢ |
|
. . A . l
109
0 20 40 60 80 100

Distance/km

3 LSA AL [0 dfy s Xk 5 4 A R ) 5 i
Fig. 3. Influence of different start point on key rate using

LSA optimization.
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LSA SR 1015 2 19 2 8 A= il R e 841 HH TR A,
X UL LSA Bk RENS 1S B AT S e, B —
TE WA SR, AR 28R I UM 1 U BH 24
TR, LSA BL TR B AE S8, inifs
NP B A R MERE, 2K TF 60 km B, Doy
KRR TR B B E A R, KT
84 km B}, DL @y, xo ARG S5 I EAR B R %
AR, Y R G AL i B e, A K 7R
B SR A HUE TS N, BEPLAE B 1054~ 85, 43
BT SR B A LR, A 45 1 AR 1S 2
T B R, BT LA ki B ALEUE )
2, BB RFEAEFVREM A R 4.5 x 1071, KT,
TR B Pk T4k LSA S0 5w LA {E.

4.4 ARMULEZET ZFIRS MDI i
PEREEL AR
535 LSA B | PSO BE FA ST 4 H 1Y
PSLSA BN BRI N = 1071500 T i s
MDI Pt AT ZH AL, & 314 R e RE AN A 4
7.

Key rate

10-10 L L . L L L
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Distance/km
B4 FURAS RS BT A4 2 B A R AT 1L
Fig. 4. Comparison among three key rates obtained by dif-

ferent optimization algorithm.
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93 km Bf, FHFXIRI R (E 5RO, M LIS 24 3L
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WL, fiES LSA Hk—FEli sl s s i, 1R,
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B yghn 2 B ERIM R G NA, X F A LLAH LSA
B IIE , BA S BRI PSO Bk T4 R
k.

X 50 km &b, AN [FEEIEAREL . BB ]
R LB R I 3 A, nT AR, =&
FER IR A 22 AN, HME LA IO R 5 R
Y5, R DRSOk ) 8 B 75 Bl a2 )
)5k, S5 PSLSA BA AL AR Bds X AH R AL
e SRR TN Sy, T LAAS R RCE R L e/
Y TIINAE Y. (24 ] Fu A PSO, LSA il PSLSA,

120303-6



) 32 2 3R Acta Phys. Sin. Vol. 72, No. 12 (2023)

120303

PSLSA /348 BA AP IR 5 PERE, J& 58 U 2t
BERANEAE 55 AR B B A5 1 1 5 T ik

® 3 MU TR AR L

Table 3. Comparison of computational resource con-
sumption among the three optimization algorithms.
A7 AR EK IS 1] /s BHIER
LSA 858 0.12 4.13 x 1076
PSO 40000 4.2 2.97 x 1076
PSLSA 40559 4.29 4.13 x 1076
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A RS R 5 LSA M, & T PSO
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Abstract

The optimal selection of parameters in practical quantum key distribution can greatly improve the key
generation rate and maximum transmission distance of the system. Owing to the high cost of global search
algorithm, local search algorithm is widely used. However, there are two shortcomings in local search algorithm.
One is that the solution obtained is not always the global optimal solution, and the other is that the
effectiveness of the algorithm is greatly dependent on the choice of initial value. This paper uses the Monte
Carlo method to prove whether the key generation rate function is convex, and also simulates and analyzes the
projection of the key generation rate function on each dimension of the parameter, in contrast to the approach
in previous article. In order to eliminate the effect of the initial value, this paper proposes the particle swarm
local search optimization algorithm which integrates particle swarm optimization algorithm and local search
algorithm. The first step is to use the particle swarm optimization to find a valid parameter which leads to
nonzero key generation rate, and the second step is to adopt the parameter as the initial value of local search
algorithm to derive the global optimal solution. Then, the two algorithms are used to conduct simulation and
their results are compared. The results show that the key generation rate function is non-convex because it does
not satisfy the definition of a convex function, however, since the key generation rate function has only one non-
zero stagnation point, the LSA algorithm can still obtain the global optimal solution with an appropriate initial
value. When the transmission distance is relatively long, the local search algorithm is invalid because it is
difficult to obtain an effective initial value by random value method. The particle swarm optimization algorithm
can overcome this shortcoming and improve the maximum transmission distance of the system at the cost of

slightly increasing the complexity of the algorithm.
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