
 

改进的测量设备无关协议参数优化方法
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实际量子密钥分发中参数的优化选择能大幅提升系统密钥生成率和最大传输距离, 由于全局搜索算法

的成本过大, 本地搜索算法被广泛地应用. 然而该算法存在两个问题, 一是所得解不一定为全局最优解, 二是

算法的有效性极大地受制于初始值的选择. 利用蒙特卡罗方法对密钥生成率函数是否为凸函数进行了证明,

并仿真分析了密钥生成率函数在不同参数维度上的特性, 提出了粒子群本地搜索算法并与本地搜索算法进

行仿真比较. 结果表明, 密钥生成率函数为非凸函数, 但合理设置初始值, 本地搜索算法仍能求得全局最优解;

在传输距离较远时, 本地搜索算法因难以通过随机取值的方法得到有效的初始值而失效, 粒子群本地搜索算

法能克服这一缺点, 以轻微增加算法复杂度为代价, 提升了系统的最大传输距离.
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 1   引　言

量子密钥分发 (quantum  key  distribution,

QKD)[1,2] 以量子物理原理为基础, 可实现远距离

双方无条件安全通信. 由于现实中设备的非理想

性, 如系统常用弱相干态光源代替理想单光子源,

所用检测器检测能力有限等, 实际 QKD系统存在

诸多易遭受攻击的漏洞 [3−5]. 针对光源有光子数分

离攻击 [6], 针对检测设备有致盲攻击、时移攻击、死

时间攻击等 [7]. 为此诱骗态协议 [8]、测量设备无关

(measurement  device  independent,  MDI)协议 [9]

等相继被提出. 二者的结合能得到较好的安全性和

较高的密钥生成率, 是一种经典的量子密钥分发协

议, 得到了广泛的研究和应用 [10,11].

在量子密钥分发实际应用中, 通过优化相关参

数的选择可有效地提升系统实际性能. 然而, 实际

系统中可调参数多, 优化难度大. 早期优化主要依

靠理论分析, 仅对部分参数进行优化, 如 Lo等 [12]

针对 BB84协议优化了 X基和 Z基的选择概率, 从

而提升了系统性能; 随着计算机的不断发展, 人们

对主要参数 (如信号强度等)进行全局搜索优化 [13],

受限于全局搜索的巨大成本, 只能凭经验固定部分

参数 (如基选概率等)从而降低搜索的维度, 在一

定程度上提升了系统性能; 2014年, Xu等 [14] 提出

了基于本地搜索算法 (local search algorithm, LSA)

的全局优化方法, 首次将所有参数统筹优化, 极大

提升了系统性能; 此后参数优化的研究主要集中于

针对时变系统的快速参数优化, 大多先以 LSA算

法求解出大量不同环境下的最优参数, 再以此数据

为基础, 训练出合适的机器学习模型用对新环境下

最优参数进行预测 [15−19].

参数的优化不仅对系统性能有重大影响, 也直

接关系到基于机器学习参数优化方法的性能. 虽

然 LSA算法速度相对较快, 但是针对非凸目标函

数容易陷入局部最优解 [20], 只有在特定情况, 局部

最优才为全局最优. Xu等 [14] 已经用三维图像的

形式对密钥生成率函数为凸函数进行了证明, 但这
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种证明不够严格. 相反, 本文采用蒙特卡罗方法证

明了密钥生成率函数并非凸函数. 因而 LSA算法

所得结果是否为最优有待进一步证明, 同时, LSA

算法受初始值影响大, 在系统衰减较大时, 随机得

到的有效初始值概率很小, 有必要寻找一种新的方

法来寻找全局最优解. 本文引入改进的粒子群算

法 (particle swarm optimization, PSO)[21,22], 提出

一种 PSO+LSA的全局参数优化方法 PSLSA, 增

强了全局寻优能力, 减少了参数优化对初始值的依

赖, 增强了系统在衰减较大时参数的优化能力, 提

升了系统性能. 该方法同样适用于采用其他量子密

钥分发协议 [23−27] 的 QKD系统.

本文首先讨论了密钥生成率函数及凸函数判

别方法, 详细描述 PSLSA算法; 随后通过仿真证

明密钥生成率函数为非凸函数, 对 LSA算法的全

局寻优能力、初始值敏感性进行仿真分析; 最后对

PSLSA算法与 LSA算法的全局寻优性能进行比

较分析.

 2   考虑统计波动的诱骗态MDI协议

 2.1    诱骗态 MDI 协议

诱骗态MDI协议具体过程如下:

{0, 1}
{Pµ, Pν , Pω} {µ, ν, ω}{

PX|µ, PX|ν , PX|ω
}

{1− PX|µ, 1− PX|ν , 1−

PX|ω}

1)Alice随机选取  作为密钥比特, 以固定

的概率  随机选取信源强度  , 以

条件概率   ( 

 )随机选择 X(Z)基作为编码基进行编码, 最

后添加随机相位以制备相干态, Bob执行相同操作.

2)Alice和 Bob分别将光脉冲发送至不可信第

三方Charlie, Charlie执行检测之后公开声明检测结

果. Alice和 Bob仅保留所选基一致且相应 Charlie

检测结果有效的比特.

qa, qb λ ∈ {X, Z}
Eλ

qaqb
Qλ

qaqb

3)重复执行 1)和 2)足够次数后, 假设 Alice

和 Bob的信源强度分别为  , 所选基  ,

根据有限的数据测量得到错误率  和增益  .

Y Z
11 eX11

4) Alice和 Bob对双方都发送 1个光子时接

收端有效响应的计数率   和错误计数率   进行

估计, 随后经过纠错、私密放大等操作得到最终密

钥生成率.

MDI协议的密钥生成率公式为 [9]
 

R ⩾ P Z
11Y

Z
11

[
1−H

(
eX11

)]
−QZ

µµfeH
(
EZ

µµ

)
, (1)

µµ

µ

P Z
11

P Z
11 = P 2

µ

(
1− PX|µ

)2
µ2 exp (−2µ) QZ

µµ

H (x) H (x) = −xlog2 (x)−

(1− x) log2 (1− x) fe

EZ
µµ

其中, 下标 11表示通信双方均发送 1个光子,   

表示通信双方信号强度均为  ; 上标 Z表示通信双

方都选择 Z基, 相应的 X表示通信双方选择 X基;

 为信源产生光子态的概率, 若光源为相干态光

源  ;   为总增益;

 为熵函数, 其表达式为  

 ;    为纠错效率 , 一般取常数 ;

 表示量子比特误码率.

Y Z
11

eX11

Y Z
11 eX11

在诱骗态 MDI协议中, 通过测量不同信源强

度下的总增益和量子比特误码率, 可以估计出 

和  , 从而得到最终密钥生成率 [28,29]. 考虑实际情

况下有限长数据效应, 实验值与理论值之间存在偏

差, 因而需对估计公式进行相应修正. 以典型的标

准差分析法 [30] 来进行统计波动分析, 实验值会以

一定概率处于某一区间, 分别用上标 U和 L表示

根据测量值估计得到的区间的上界和下界. 估计

 和  的约束条件可以写成如下形式 [28]:
 

Qλ,L
qaqb

⩽
∑

n,m=0

exp (−qa − qb)
qna
n!

qmb
m!

Y λ
nm ⩽ Qλ,U

qaqb
,

Eλ,L
qaqb

Qλ,L
qaqb

⩽
∑

n,m=0

exp (−qa − qb)
qna
n!

qmb
m!

eλnmY λ
nm

⩽ Eλ,U
qaqb

Qλ,U
qaqb

,

Qλ,U
qaqb

= Qλ
qaqb

(1 + βq) ; Qλ,L
qaqb

= Qλ
qaqb

(1− βq) ,

Eλ,U
qaqb

Qλ,U
qaqb

= Eλ
qaqb

Qλ
qaqb

(1 + βeq) ;

Eλ,L
qaqb

Qλ,L
qaqb

= Eλ
qaqb

Qλ
qaqb

(1− βeq) . (2)

Y λ
nm, eλnm

Qλ,U
qaqb

Qλ,L
qaqb

Eλ,U
qaqb

Eλ,L
qaqb

Qλ
qaqb

Eλ
qaqb

βq, βeq

与 (1)式中定义类似,   分别表示计数率和错

误计数率,   和  (  和  )分别为 

(  )的上界和下界. 波动率  可表示为
 

βq = min

 nα√
Nλ

qaqb
Qλ

qaqb

, 1

 ,

βeq = min

 nα√
Nλ

qaqb
Eλ

qaqb
Qλ

qaqb

, 1

 . (3)

nα Nλ
qaqb其中   为标准差,    为选择对应的信源强度和

基底时, 发送的总脉冲个数.

Y Z
11 eX11

µ > ν > ω ⩾ 0

二诱骗态情况下, 根据 (2)式,    和   可用

线性规划的方法来估计, 还可以假设信源强度满足

 , 用下式进行估计 [31,32]:
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Y Z
11 ⩾ Y Z,L

11 =
1

(µ− ω)
2
(ν − ω)

2
(µ− ν)

×
[ (

µ2 − ω2
)
(µ− ω)

(
QZ,L

νν exp (2ν) +QZ,L
ωω exp (2ω)−QZ,U

νω exp (ν + ω)−QZ,U
ων exp (ω + ν)

)
−
(
ν2 − ω2

)
(ν − ω)

(
QZ,U

µµ exp (2µ) +QZ,U
ωω exp (2ω)−QZ,L

µω exp (µ+ ω)−QZ,L
ωµ exp (ω + µ)

) ]
,

eX11 ⩽ eX,U11 =
1

(ν − ω)
2
Y X,L
11

[
EX,U

νν QX,U
νν exp (2ν) + EX,U

ωω QX,U
ωω exp (2ω)

− EX,L
νω QX,L

νω exp (ν + ω)− EX,L
ων QX,L

ων exp (ω + ν)
]
, (4)

Y X, L
11 Y Z, L

11式中,   的估计公式与  相似, 仅仅只有基的

差别.

µ, ν, ω

Pµ, Pν ω

Pω = 1− Pµ − Pν

PX|µ, PX|ν , PX|ω

1− PX|µ, 1− PX|ν , 1− PX|ω

x = [µ, ν, ω, Pµ, Pν , PX|µ, PX|ν ,

PX|ω]

x R

综合 (1)—(4)式可以看出, 密钥生成率与如下

参数的选择有关: 信号态、诱骗态信源强度  ,

选择信号态、诱骗态的概率   , 选择   的概率

 , 以及确定信源强度后选择 X基

的条件概率   , 选择 Z基的条件概率

 , 因而独立参数只有 8个.

将相关参数组合得到  

 为参数选择向量, 本文的问题即为寻找最优

的  使得密钥生成率  最大.

 2.2    密钥生成率函数的非凸性判别

Ω

x,y ∈ Ω 0 ⩽ θ ⩽ 1

凸函数的定义: 定义域为凸集  的函数, 对任

意的  ,   , 满足: 

f (θx+ (1− θ)y) ⩽ θf (x) + (1− θ) f (y) . (5)

基于此定义, 构造密钥生成率函数凸性判别

函数: 

F (θ,x1,x2) = R (θx1 + (1− θ)x2)− θR (x1)

− (1− θ)R (x2) , (6)

θ [0, 1] x1,x2其中  为  中任意常数,   为两组不同参数,

分别称为两个点.

F ⩾ 0 F ⩽ 0当   恒成立或   恒成立时, 密钥生成

率函数为凸函数, 反之则为非凸函数.

 3   参数优化方法

1016

待优化选择的参数具有 8个维度, 假设在每一

个维度定义域内均匀取样 100个点, 那么全局搜索

需要迭代的次数为   , 如果利用普通办公电脑,

所需要的时间超过 57年, 这是一项不可能完成的

任务. Xu等 [14] 结合坐标下降算法和线性回溯算

102法 [20] 提出 LSA算法, 将迭代次数减少到  量级,

在较短的时间内寻找到了局部最优解, 大幅提升了

系统性能.

LSA算法的具体流程如下:
  

fLSA (x1, · · · , xn)目标函数 

p0 =
(
x0
1, · · · , x0

n

)

fLSA

(
xt+1
1 , · · · , xt+1

k−1, x
t
k, x

t
k+1, · · · , x

t
n

)
xt
k

fLSA

(
xt+1
1 , · · · , xt+1

k−1, x
t+1
k , xt

k+1, · · · , x
t
n

)
>

fLSA

(
xt+1
1 , · · · , xt+1

k−1, x
t
k, x

t
k+1, · · · , x

t
n

)
xt
k xt+1

k

pt+1 =
(
xt+1
1 , · · · , xt+1

k−1, x
t+1
k , xt

k+1, · · · , x
t
n

)
pt+1 =

(
xt+1
1 , · · · , xt+1

k−1, x
t
k, x

t
k+1, · · · , x

t
n

)

pt+1

(
xt+1
1 , · · · , xt+1

n

)
fLSA

(
xt+1
1 , · · · , xt+1

n

)

根据经验初始化搜索位置  , 初始化迭代次数

t = 0;

while (迭代判决条件) do

　for k = 1∶n

　　对  在  维度上

　　进行线性回溯搜索

　　if  

　 　  

　　　更新  为 

　　　 

　　else

　　　 

　　end

　end

　更新迭代次数 t = t + 1

　更新搜索位置为 

end

输出最终结果  和 

 
 

然而, LSA算法在目标函数为非凸时局部最

优解为全局最优解还需进一步证明, 并且其对初始

位置十分敏感, 针对本文所讨论的密钥生成率问题

来看, 其在有限长数据情况下, 优化所得结果还有

较大的提升空间. 因此本文提出 PSLSA优化方法

改善 LSA算法的初值选择.

粒子群算法是一种受自然界中群体智能行为

启发的智能优化算法, 因其简单、灵活、高效, 在全

局优化问题中得到了广泛地应用 [33,34]. 粒子群算法

中, 可根据经验设定粒子的初始位置, 在算法中加

入经验知识, 有助于提升算法的性能, 对剩余粒子

随机赋予初始位置, 可增强算法的全局搜索能力 [33],
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速度更新策略对粒子群算法的全局寻优能力、收敛

速度、算法精度等都有影响, 本文采用改进的二阶

振荡粒子群算法 [22] 速度更新策略, 优化算法性能,

进化方程如下: 

 

νt+1
i = κνt

i + φ1

[
x∗
i − (1 + ε1)x

t
i + ε2x

t−1
i

]
+ φ2

[
ga − (1 + ε3)x

t
i + ε4x

t−1
i

]
,0 < ε2 <

1 + ε1
2

, 0 < ε4 <
1 + ε3

2
, 0 < ε1 < 1, 0 < ε2 < 1, i < M/2,

ε1 < ε2 − 1, ε3 < ε4 − 1, 0 < ε2 < 1, 0 < ε4 < 1, i > M/2,

xt+1
i = xt

i + vt+1
i , (7)

νt
i t i κ

φ1, φ2 [0, 1]

ε1, ε2, ε3, ε4

xt
i t i x*

i

ga M

式中   表示   时刻第   个粒子的速度,    为惯性权

重,   为学习因子与  区间均匀分布随机参

数的积,    为满足上述约束条件的参数,

 表示   时刻第   个粒子的位置,    表示该粒子的

历史最优位置,   表示全局最优位置,   表示总的

迭代次数.

本文首先用改进的 PSO算法得到局部最优,

以该结果作为 LSA算法的初始位置, 一方面避免

了 LSA算法的随机初始位置无法得到有效解的问

题, 另一方面, 给出了较优的初始位置, 减少 LSA

的迭代次数. 算法具体流程如下:
 
 

f (x)目标函数 

x1

n− 1 xi νi

ga ga = min {f (x1) , · · · , f (xn)}

νt+1
i

xt+1
i

x∗
i

ga

x∗
i ga

ga

根据经验初始化粒子1的位置 

初始化剩余  个粒子的位置  和所有粒子的速度 

寻找全局最优解  ,  

while(迭代判决条件) do

　for 所有的粒子 do

　　更新速度 

　　更新位置 

　　计算目标函数在新位置的值

　　更新当前粒子的历史最优位置 

　end

更新全局最优解 

　end

输出最终结果  和 

以  为初始点, 采用LSA算法求局部最优解

 4   仿真及分析

ηd

ed Y0

fe χ N

α

仿真参数与文献 [14]保持一致, 主要来源于相

关科学实验数据 [35]. 具体如表 1所列. 表中  为检

测器的检测效率,   为非对准错误率,   为背景计

数率,    为纠错效率,    为错误概率,    为发送的

总脉冲数,   为光纤衰减系数.
 

表 1    用于仿真分析的相关参数
Table 1.    Practical parameters for numerical simulations.

ηd  /% ed  /% Y0 fe χ N α 

14.5 1.5 6.02× 10−6 1.16 10−7 1012 0.21

 4.1    密钥生成率函数的凸性判别

[θ,x1,x2] F R (x1)=0 R (x2)=0

采用蒙特卡罗方法, 以 1 km处密钥生成率为

例, 在定义域内按照均匀分布随机选取 10000组

 , 计算  值, 过滤掉  和 

的点, 所得图像如图 1所示.

F (θ,x1,x2)

Y Z
11 eX11

图 1分别用红色、蓝色来代表   大

于 0、小于 0两种情况. 结果显示, 无论利用线性规

划还是 (4)式来估计  和  , 在这 10000个点的

取值中, 凸性判别函数同时存在大于 0和小于 0的

情况. 具体存在以下 4个点 (表 2). 从表 2可以更

清晰地看出, 密钥生成率函数不满足凸函数的定

义, 故密钥生成率函数是非凸函数.

 4.2    LSA 算法的全局最优性

分别用表 2中 4个点作为初始值, 利用 LSA

 

表 2    可判别密钥生成率非凸的四个点
Table 2.    Four points which can be used to discrim-

inate the key rate is non convex function.

参数 x1 x2 x3 x4 

µ 0.40 0.60 0.50 0.075

ν 0.037 0.045 0.029 5.9×10−3 

ω 7.9×10−4 2.6×10−3 2.0×10−3 2.57×10−4 

Pµ 0.15 0.48 0.54 0.020

Pν 0.18 0.13 0.26 0.48

PX|µ 0.8 0.14 0.76 0.14

PX|ν 0.92 0.56 0.89 0.64

PX|ω 0.25 0.99 0.54 0.55

θ 0.47 0.64

F (θ,x,y) −5.50× 10−6 3.84× 10−6 
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[0.46, 0.041, 0,

0.79, 0.15, 0.0050, 0.74, 0.92]

算法进行优化得到的结果相同, 均为 

 . 这说明尽管密钥生成

率函数不是凸函数, LSA算法仍能收敛到全局最优.

[0.5, 0.1, 0, 0.33, 0.33, 0.5, 0.5, 0.5]

分析 1 km处 , 密钥生成率函数在经验点

 处不同维度上投影

情况如图 2所示.

Pµ, PX|µ

由图 2可知, 就经验点处而言, 不考虑密钥生

成率为 0的情况, 密钥生成率函数在   上的

投影为非凸函数, 在其余维度上的投影均为凸函

数, 并且在非凸情况下, 密钥生成率函数只有一个
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F (θ,x1,x2)Fig. 1. Values of convex discriminant function of    with 10 thousand random input variables.
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图 2    密钥生成率随单个参数的变化曲线

Fig. 2. Curves of key rate versus each parameter of the input. 
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驻点, 此时利用 LSA算法不会陷入局部最优, 所得

结果仍为全局最优. 这一方面证明了密钥生成率函

数的非凸性, 也说明了 LSA算法利用合适的初始

值, 可以收敛到全局最优.

 4.3    LSA 算法对初始值的依赖

LSA算法对初始值具有较强的依赖性, 首先

对不同初始值情况下, 经 LSA算法优化后密钥生

成率性能进行比较分析. 根据文献 [14]中所列的经

验值, 分别设定初始值为 

x1 = [0.5, 0.1, 0, 0.33, 0.33, 0.5, 0.5, 0.5] ,
 

x2 = [0.21, 0.06, 0, 0.33, 0.33, 0.5, 0.5, 0.5] ,
 

x3 =
[
0.25, 0.05, 10−6, 0.58, 0.30, 0.03, 0.71, 0.83

]
.

所得密钥生成率如图 3所示.

x1

x1,x2

105

4.5× 10−4

由图 3可以看出, 比较小于 60 km处的图像

可知, 对于某一确定的距离, 若初始点有效, 则经

LSA算法优化得到的密钥生成率收敛于相同值,

这说明 LSA算法能够得到相对较优的解, 具有一

定的有效性; 然而, 图像中突然的截断性说明当初

始点失效, LSA算法无法得到合适的参数, 从而得

到较好的密钥生成率性能, 当大于 60 km时, 以 

为初始点无法得到有效的密钥生成率 , 当大于

84 km时, 以  为初始点均无法得到有效的密

钥生成率. 当系统传输距离较远, 衰减较大时, 在

各参数的合理取值范围内, 随机生成   个点, 分

别计算各点的密钥生成率, 仅有 45个点能够得到

非零密钥生成率, 因此可以认为通过随机取值的方

法, 得到系统非零初始值概率为   . 因而,

需要找到一种方法寻找 LSA算法的有效初始值.

 4.4    不同优化算法下二诱骗态 MDI 协议
性能比较

N = 1012
分别用 LSA算法、PSO算法和本文所提出的

PSLSA算法对数据长度  情况下二诱骗态

MDI协议进行参数优化, 密钥生成率性能如图 4

所示.

图 4中实线表示利用本文提出的 PSLSA算法

优化后所得密钥生成率, 虚线表示利用 LSA算法

优化, 点划线表示利用 PSO算法优化, 点线表示

未经优化仅凭经验设置参数. 经过优化后, 密钥生

成率和最大传输距离均有大幅提升, 这说明对参数

的优化选择可极大提升系统性能.

相较 PSO算法, LSA算法在初始值合适的情

况下, 能够明显提升密钥生成率, 但在距离大于

93 km时, 由于对初始值的强依赖, 难以得到有效

的优化参数, 此时 PSO算法反而更加有效. 就密

钥生成率函数而言, PSO算法经过足够多的迭代

次数, 能与 LSA算法一样收敛到全局最优, 但是,

PSO算法的全局寻优效率低于 LSA算法, 迭代次

数的增加会显著增加系统成本, 对于可以用 LSA

算法的情景, 没有必要利用 PSO算法来寻找全局

最优.

对于 50 km处, 不同算法迭代次数、所花时间

及最终密钥生成率如表 3所列. 可以看出, 三者消

耗的资源相差不大, 都难以满足时效性要求高的应

用场景. 若想解决时效性问题, 还需借助机器学习

等方法, 基于 PSLSA算法优化所得数据对相应机

器学习模型进行训练, 可以得到时效性高、功耗小

的预测模型. 但是横向比较 PSO, LSA和 PSLSA,
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PSLSA仍然具有更好的综合性能, 是完成时效性

要求不高任务如生成训练数据等的首选方法.
 
 

表 3    三种优化算法计算资源消耗比较
Table 3.    Comparison of  computational  resource   con-

sumption among the three optimization algorithms.

算法 迭代次数 时间/s 密钥生成率

LSA 858 0.12 4.13× 10−6 

PSO 40000 4.2 2.97× 10−6 

PSLSA 40559 4.29 4.13× 10−6 

 
 

本文提出的 PSLSA算法结合了两种算法的优

点, 在密钥生成率上与 LSA算法相同, 高于 PSO

算法, 在最大传输距离上与 PSO算法相同, 达到

了 112 km, 高于 LSA算法, 且均能达到了相应算

法的极限 . PSLSA算法的成本小于 PSO算法和

LSA算法之和, 因为 PSO算法得到的初始值在一

定程度上减少了 LSA算法的迭代次数, 此外仅用

PSO算法寻找非零点, 通过减少迭代次数, 可以有

效地控制 PSO算法的成本, 综合来看, PSLSA算

法具有有效性和可行性.

 5   结　论

本文利用蒙特卡罗方法证明了密钥生成率关

于可选参数的函数为非凸函数, 但同时也进一步

对 LSA算法能得到全局最优解进行了仿真分析,

这进一步增强了在量子密钥分发中, 利用 LSA算

法优化可选参数的科学性.

同时, 本文对 LSA算法的强初始值依赖性进

行了仿真分析, 结果表明无效的初始值对 LSA算

法具有致命性影响, 且在系统衰减较大时, 随机初

始值有效的概率极小, 难以通过简单地尝试法判断

是否存在使密钥生成率不为 0的参数.

最后, 通过与其他算法的优化结果比较可知,

本文提出的 PSLSA算法在密钥生成率和最大传输

距离上都能达到较好性能, 虽然在成本上有所牺

牲, 但是从实际应用来看, 文中算法都无法达到实

时性要求, 这种时间上的牺牲, 不会对算法的应用

场景产生更多的限制.
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Abstract

The  optimal  selection  of  parameters  in  practical  quantum  key  distribution  can  greatly  improve  the  key

generation  rate  and  maximum  transmission  distance  of  the  system.  Owing  to  the  high  cost  of  global  search

algorithm, local search algorithm is widely used. However, there are two shortcomings in local search algorithm.

One  is  that  the  solution  obtained  is  not  always  the  global  optimal  solution,  and  the  other  is  that  the

effectiveness  of  the  algorithm is  greatly  dependent  on  the  choice  of  initial  value.  This  paper  uses  the  Monte

Carlo method to prove whether the key generation rate function is convex, and also simulates and analyzes the

projection of the key generation rate function on each dimension of the parameter, in contrast to the approach

in previous article. In order to eliminate the effect of the initial value, this paper proposes the particle swarm

local  search  optimization  algorithm  which  integrates  particle  swarm  optimization  algorithm  and  local  search

algorithm.  The  first  step  is  to  use  the  particle  swarm optimization  to  find  a  valid  parameter  which  leads  to

nonzero key generation rate, and the second step is to adopt the parameter as the initial value of local search

algorithm to derive the global optimal solution. Then, the two algorithms are used to conduct simulation and

their results are compared. The results show that the key generation rate function is non-convex because it does

not satisfy the definition of a convex function, however, since the key generation rate function has only one non-

zero stagnation point, the LSA algorithm can still obtain the global optimal solution with an appropriate initial

value.  When  the  transmission  distance  is  relatively  long,  the  local  search  algorithm  is  invalid  because  it  is

difficult to obtain an effective initial value by random value method. The particle swarm optimization algorithm

can overcome this shortcoming and improve the maximum transmission distance of  the system at the cost of

slightly increasing the complexity of the algorithm.

Keywords: quantum key  distribution, particle  swarm algorithm, measurement  device  independent  protocol,
optimization of parameters
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