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Table 1.  Parameters for different models.

S iRl
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Fig. 1. One-sixth three-dimensional PVI pulsed electric field

ablation model.
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Fig. 2. Mean value, standard deviation, and 90% prediction space of conductivity output of H and G models.
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Fig. 3. First order Sobol sensitivity index and average Sobol index of each parameter of the H and G models.
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Fig. 4. Electric field distribution of three-dimensional PVI ablation model.
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Abstract

Pulsed field ablation (PFA) is a new type of physical energy source in the fields of tumor and atrial
fibrillation ablation, which is based on irreversible electroporation with non-thermal, clear ablation boundaries,
selective killing, and rapid advantages. The PFA triggers off the changes in the electrical conductivity of
ablation zone, which can be described by a step function and used to predict the ablation zone. However,
current research does not compare the advantages and disadvantages of different conductivity models, nor does
it consider the effects of model parameter change caused by individual differences and errors on the efficacy of
PFA. This work is devoted to comparing two commonly used conductivity models (Heaviside model and
Gompertz model), and quantifying the influence of model input uncertainty on model output and PFA ablation
zone.

In this work, we carry out uncertainty quantification and sensitivity analysis to quantify the influence of
model parameter uncertainty on model output, clarify the parameter sensitivity distribution, and provide model
selection criteria from the perspectives of model complexity, parameter sensitivity distribution, and model
robustness. Combined with finite element simulation, the study quantifies the effects of uncertainty in the most
sensitive parameters of the conductivity model and ablation threshold on the PFA ablation zone. The results
show that different conductivity models exhibit different robustness under the same proportion of variation in
parameters. The Heaviside model, which is determined by a single factor, has strong robustness. The
uncertainty output of the Gompertz model is jointly determined by multiple sensitivity parameters, making it
susceptible to various conditions. The ablation threshold and pre-treatment tissue conductivity are the two
most sensitive parameters affecting the assessment of ablation depth. Changes in the ablation threshold result in
a Gaussian distribution of ablation depth. The greater the change in pre-treatment tissue conductivity, the
greater the change in ablation depth is, which, however, follows a nonlinear proportional relationship. This
approach can improve the accuracy and reliability of PFA ablation prediction, and provide a visual and global
way to show the influence of input uncertainties on model output and parameter sensitivity ranking, thus
effectively improving the accuracy of model prediction, reducing computational costs, and optimizing the
selection of candidate models. This strategy can be applied to a variety of mathematical physics and simulation
models to enhance model credibility and simplify the models.

Keywords: conductivity model, sensitivity analysis, electroporation, pulsed field ablation
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