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Fig. 1. TEM graphs and schematic diagrams of CuAlMn shape memory alloy: (a), (c) Bulk alloy; (b), (d) porous alloy.
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Fig. 2. Phase-field simulations of CuAlMn martensitic transformation without interface constraint: (a) 3D simulation image at

20000 steps; (b) 2D simulation section at 20000 steps; (c) content of each variant with simulation step, variants 1-4 are represented

by red, green, blue, and gray respectively (the same below).
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Fig. 3. Phase-field simulations of CuAlMn martensitic transformation under non-free interface constraint: (a) Schematic diagram of

non-free interface in the model; (b) 3D simulation image at 20000 steps; (c) content of each variant with simulation step; (d) 2D

simulation section at 20000 steps.
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Fig. 4. The morphology and distribution of the free energy density of CuAlMn alloy in horizonal section under non-free interface
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Fig. 5. Phase-field simulations of martensitic transformation of CuAlMn alloy under localized non-free interface constraint: (a),

(b) Schematic diagram of localized non-free interface in the model; (c), (d) morphology and free energy density distribution in hori-

zonal section with localized non-free interface added in the simulation results without interface constraints (Fig. 2); (e) content of

each variant with simulation step; (f), (g) morphology and free energy density in horizonal section under localized non-free inter-

face constraint.
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Abstract

Porous materials, characterized by the presence of interconnected pores, exhibit the properties different
from their bulk counterparts. One of properties of interest is that the pores can influence the martensitic
transformation in shape memory alloys (SMAs), which directly affects the material's shape memory effect and
mechanical properties. The martensitic transformation is accompanied by the formation of different martensitic
variants, which determine the overall morphology, distribution, and self-accommodation effect of the
transformed regions. Previous experimental studies have shown that the presence of pores, particularly at the
metal-air interface, can significantly affect the martensitic variant structure, leading to its thinning. This
thinning effect has been found to be able to improve the damping performance of the alloy. Experimental
observations have indicated that no relief of martensitic variants was found around the metal-air interface, but
non-transformed regions were observed. These observations suggest that the metal-air interface in porous
materials is not a free surface and plays a crucial role in influencing the martensitic transformation. To further
investigate the effect of martensitic variant self-accommodation on different constrained interfaces in porous
materials, a three-dimensional phase-field model based on the time dependent Ginzburg-Landau (TDGL)
function is proposed in this study. The phase-field model can give a comprehensive understanding of the
evolution of martensitic variants and their interaction with the constrained interfaces. Remarkably, the
simulation results accord well with the experimental findings, demonstrating the presence of fine martensitic
variants near the metal-air interface. The simulations under different interface constraint conditions reveal that
increasing the specific surface area of porous materials is an effective strategy to obtain a more refined
martensitic variant structure. The system’s total energy is minimized by reducing the strain energy, which leads
to the formation of a greater number of fine martensitic variants. This finding suggests that controlling the
specific surface area of porous materials can be a promising approach to tailoring the mechanical properties of
SMAs for specific applications. In conclusion, the presence of metal-air interface in porous material significantly
influences the evolution of the martensitic transformation in SMA. Experimental observations show that the
introduction of pore can modify the martensitic variant structure, resulting in improved damping performance.
The proposed phase-field model successfully captures the behavior of martensitic variants near constrained
interface. The simulation results emphasize the importance of specific surface area in obtaining fine martensitic
variant structures. These findings contribute to a more in-depth understanding of the role of porous materials in
shaping the properties of SMAs and provide a valuable insight into their design and application in various
fields.
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