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Fig. 1. Eigen-functions of the ballooning model with hyper-
resistivity (R=3.52m, r=1.24m, ¢=2.35, s=2.59,
a=046,n=35,n=10"", ng =9 x 107 19).
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Fig. 2. Effect of hyper-resistivity on the linear growth rate

of ideal ballooning modes, where the z-coordinate represents

the toroidal mode number, and the y-coordinate is the linear

growth rate of ballooning modes.
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Fig. 3. Linear growth rate of ballooning modes varies with
toroidal mode number under different resistivity and hyper-
resistivity, the ratio of hyper-resistivity to resistivity re-
main unchanged, where ay = 10~7.

145201-4



) 32 2 3R Acta Phys. Sin. Vol. 72, No. 14 (2023) 145201

FEL BEL ol BRI IR AR A3 RABAE DR o ANE
HIR ARG REHI T ILFAZ. XU, anXf
ABRBEATRE RS SRR .

XF LU 4 OS] UL, 57
AR T 50 B, 2% R B A9 BRI M 1
R T2 FE e L BEL P ) BB LR R 2 FR ]
B0 T 50 I, 25 REGEE HL BH B9 URRBE LR PRI IR
KT 2% 1 B B AY TBRBEZ PR R A HeAt iy
2, WA T OL, X TAE—RE R/ P A L BH
FEFLRH, PR BECRART, A BE X TBRBEAR E
PERY S L e BEL R, (R [ RO R, A )Y
7 L L X U BR AR AN AR E P 1952 T 2 5 T L HELRHL
1 (22) ZXATLIE Y o H RIS 0 [ B n 19 4 IR
I AELE, T B n 1P J7 BAE HE, R, HEH
T A i) RS AV 11 B A X S BRABE AN P 52 i B
iR, 1111 P LR B [ BRSO R g S BRI AN S
INEAEST S

0.06

-%-n=5x10"1 ny =0
0.05 ——n=>5Xx10"10, py =1x10-16
VO % p=1x10-9% gy =0
——n=1x10"9 ng=1x10"16
0.04 —%-1n=5x10"9 ng =0
——n=>5x10"9 ng=1x10"16

3 po3f* 1=1x107% my=0
< n=1x10"8,
= 1x 1016
0.02t .,

Ny =1x10-16

0.01 |

0 i
10 20 30 40 50 60 70 &80 90 100

n

4 PRIFBHBLK/ANARE (g = 10716), R IF B4
AR M R K AR B R ) A A

Fig. 4. The linear growth rate of the ballooning mode varies
with the toroidal mode number under different resistivity
conditions, keeping the values of the hyper-resistivity un-

changed, where ny = 10716,

I8 SCHR [14, 20] T 516 HLH -5 L BH FLE S5
JEF A 1070—107* ) [Htt, BEH—N4 /NG H BH
(mu = 1071%), CRAFHAEAAS, ks s FHLAE, BF5T
BRI — LM AR 0. f T 4 AT
PRI, 25 FEL BHRITER FL B A R G 1 % (B
MY AL ) A L % R R BH ) BRI P
K& (0L &, I i B AR 4 1 4
KRMAH R, BRI A& e (E R pE, (H
BRI KAEEN A W ARk YR, an K
/N, BER I TAE AL/,

LR A W] vl EL RIS L X BB AR E 1Y
HA XA, BefTarE IR 5 R 2%
JiE: FEL SEL ARSI R FEL BELAR S A A, B AT T BRI
— ARG KR A L S 2% T R B SO B
7 P BELASS RN P A, (LD L A 2 B AR BRI i
Y b BEL 7 P BHL R SR R SBRB AN F Ve R AR
YRR, HPIH Z AP FE5E 0 R TR an A2
I, AN BE A0 T, L F B S SR Bk 2k
PG A AN F LA A 2E (AR B R R
I IEASANS T 24 e A BELAEL AR N, AN [ L B
THOLT, i e L ) R A M ROoR S AN
I ZE(EA WA, A, A A BE - AL RE
FRYAFXS /N s R H BELV BB R P £
BELEE]

1117 ELAE 7 R L BN B L T, SR B A R
NS, A TG R BEX SRR — L R R R L
VAN, (EL G P 1) B ROZE B4 R, S P BHL A
FFIR X BRI — AL L PSR R A . X B 7E
PR ) BEASCRATR T, A B SO, X B AR E TR Y
FAaAE P Bl BEASONAE 5, FE— 2D 2 W] Pl BEASON
 FL AR, 22 (B BAT 240 G R

N T T R B A - R B A 2 [ £ B A
KZ, PRAFFRLBH (1 =1 x 107%) A8, Mo i
{EL, 1 oo AU, SOBRBRER P KRB ) R0 AL
WnlE 5 R, ATRLFE Y, BARAEBE ) BB IR
7 FEL R BRI R B S, (R 21w
BRECHE R, L BRSBTS, R

0.06

ag=1x10-6
—— ag = 95X 10-7
[o—ap=1X 10-7
——ag=5x10"8

0.05

0.04 | o =1x10-8
~6o-ag=0
3
= 0.03
0.02
0.01

0 b——-% H . . . . .
5 10 15 20 25 30 35 40 45 50

n

K5 AR o SR, ABRASTL M 1 K S B A 1] B A1
ARALAEBL, o i B = 1078 fRAF AL

Fig. 5. The linear growth rate of the ballooning mode varies
with the toroidal mode number under different ratio of the
hyper-resistivity to the resistivity, where the value of resi-

stivity is a constant.
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Fig. 7. Effect of hyper-resistivity on the linear growth rate

of ideal ballooning modes with diamagnetic effect.
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Abstract

The coupling of ballooning mode and peeling mode forms the so-called peeling-ballooning mode, which is
widely used in the physical explanation of the edge localized mode (ELM). The nonlinear platform simulation
based on the non-ideal peeling-ballooning mode model successfully explained the ELM experimental results.
Therefore, exploring the influences of various non-ideal effects on the ballooning mode in the edge transport
barrier is very important in controlling the ELM in the future fusion reactors. Among the reports on non-ideal
effects, there are few reports involving the effect of hyper-resistivity caused by anomalous electron viscosity on
ballooning mode. It has been found that the hyper-resistivity has a destabilizing effect on the ballooning mode,
but the associated physical mechanism is still unclear. Therefore, it is necessary to systematically explore the
influence of hyper-resistivity on the ballooning mode theoretically by introducing hyper-resistivity into the
ballooning mode model. The linear growth rate of ideal and non-ideal ballooning mode are solved by the
shooting method for the derived eigenvalue equation of non-ideal ballooning mode containing hyper-resistivity,
finite resistivity and diamagnetic drift effects, and the dependence of ballooning mode on hyper-resistivity is
also explored under different conditions. The results show that the hyper-resistivity may destabilize the
ballooning mode, and the physical mechanism is that the current diffusion effect caused by the hyper-resistivity
weakens the stabilizing effect of the magnetic field line bending on the ballooning mode. When both the
resistivity and hyper-resistivity are considered, they are in a competitive relationship. When the ratio of hyper-
resistivity to resistivity is relatively high, hyper-resistivity plays a dominant role, and the destabilizing effect of
resistivity will be shielded by hyper-resistivity, and vice versa. The destabilization effect of hyper-resistivity on
ballooning modes is enhanced with the increase of the toroidal mode number. The hyper-resistivity will
destabilize the original stable modes once the toroidal mode number exceeds a certain threshold. Further studies
show that the threshold is inversely proportional to the ratio of hyper-resistivity to resistivity. The research
results have important reference value for the control of edge localized modes in low-collisionality edge plasma

in future fusion reactors.
Keywords: tokamak, magnetohydrodynamic instability, ballooning modes, hyper-resistivity
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