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Fig. 1. (a) Top view of the Top mode with N atoms in blue, C atoms in orange; (b) side view of the top mode configuration, d, is

the equilibrium interlayer spacing (3.15 A); (c) interlayer binding energy as a function of the interlayer distance d, the yellow (red)

background corresponds to the applied vertical compressive (stretch) strain; (d) phonon spectrum of Gr/CsN vdWH in equilibrium;

(e) molecular dynamics simulation at a temperature of 300 K, the total energy of Gr/C3N vdWH varies over a time duration of

10 ps. The inset shows the structure at the end of the simulation.
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Fig. 2. (a) Projected energy band of Gr/C3N vdWH with equilibrium configuration. The black part corresponds to the energy band

of Gr and the red part corresponds to the energy band of C3N; (b) the plane-average deformation charge density, the orange part

indicates electron accumulation, the blue part indicates electron depletion; (c) electrostatic potential of Gr/CsN vdWH at the equi-

librium interlayer spacing along the Z-direction, the black part corresponds to Gr and the red part corresponds to CsN.
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Fig. 3. (a) Trend of SBH and band gap of Gr and CsN in
the Gr/C3N vdWH with the electric field; (b) the band
structure of heterojunction at different positive electric
fields; (c) the band structure of heterojunction at different
negative electric fields, the green (purple) range corres-
ponds to @, (Pp).
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Fig. 4. (a) Trend of SBH and band gap of Gr and C3N in
the Gr/C3N vdWH with the interlayer distance(d); (b) the

band structure of the heterojunction under compressive

strains; (c) the band structure of the heterojunction under
tensile strain, the light green range corresponds to the band

gap width of Gr being opened.
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Abstract

Graphene-based van der Waals heterojunctions can not only modulate the electronic properties of graphene
but also retain the superior properties of the original monolayer. In this paper, the structure, electrical contact
types, electronic and optical properties of graphene/CsN van der Waals heterojunctions are systematically
investigated based on first-principles calculations. We find that there is a p-type Schottky contact of only
0.039 eV in the graphene/C3N van der Waals heterojunctions in an equilibrium state. The external electric field
can adjust the interface contact type, specifically, from p-type to n-type Schottky contact, or from p-type
Schottky contact to Ohmic contact. The vertical strain not only opens a nonnegligible band gap of 360 meV on
the Dirac cone of graphene in graphene/C3;N van der Waals heterojunctions, but also modulates the band gap of
CsN in the heterojunctions. Moreover, both the doping type and concentration of the carriers can be effectively
tuned by the applied electric field and the vertical strain. The increase in carrier concentration is more
pronounced by the applied electric field. Comparing with the pristine monolayer graphene and monolayer C3N,
the optical response range and the light absorption rate of graphene /CsN van der Waals heterojunctions are
enhanced. Main absorption peak in the spectrum reaches to 10° cm™'. These results not only provide valuable
theoretical guidance for designing Schottky-based graphene/CsN van der Waals heterojunctions devices, but
also further explore the potential applications of heterojunctions in optoelectronic nanodevices and field-effect
transistor devices.
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