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Fig. 1. (a) Schematic diagram of the Ag/HfO,/NiO,/HfO,/
Pt-Si stack; (b) XRD spectra of the NiO, film, NiO,/HfO,
and HfO,/NiO,/HfO, stacks on Pt coated Si (Pt-Si) sub-

strates.
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Table 1.  Preparation parameters of the Ag/HfO,/NiO,/HfO,/Pt stack.
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Fig. 2. Top-view SEM images and particle size distributions (upper-right insets) of NiO, films with the preferred (a) (111) and

(b) (100) orientations, respectively.
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Fig. 3. (a) Cross-sectional SEM image, (b) EDS spectrum, and EDS maps of (c) Ni, (d) O, (e) Pt and (f) Si elements for the

HfO,/NiO,/HfO, stack on the Pt-Si substrate. Inset in Fig.(b) shows the atomic percent of Ni, O, Pt, and Hf elements in the
sample.

50 nm
(B == = o = = s

E 4 (a) ULBFE Pt-Si 4K 19 HEO,/NiO,/HEO, HEAR KT #K i i) HRTEM M A5 [ (a) H B9 (b) HEO,/NiO, F 1 J= 3 X 38k (41t )7
MERRIE) Fl (c) NiO,/HfO,/Pt JRy#f X 3k (K14 5 HEAR ) 1Y & A% 40 HRTEM B

Fig. 4. (a) HRTEM images for the cross sectional HfO,/NiO,/HfO, stack on Pt-Si substrate. Magnified HRTEM images for (b) the
HfO,/NiO, and (c) the NiO,/HfO,/Pt interfaces marked with the red and the white boxes in Fig.(a), respectively.
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Fig. 5. Variations of the atomic percent for Hf, Ni, Pt, and

O in the HfO,/NiO,/HfO, stack with etching times.
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2p core levels for the HfO,/NiO,/HfO, stack.
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Fig. 8. Resistive switching properties of the HfO,/NiO,/HfO, stack: (a) I-V loops; (b) variations of resistance for the HRS, IRS and
LRS with the cycle number at the reading voltage of 0.1 V; (c¢) cumulative probability distributions of Vg, Vseo and Vieget; (d) re-
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THZI, AAEE-30 — 170 mV XA, fJE,
FAE T HFO,/NiO,/HfO, HERGER AW HUIR S T 1Y
AR ANE (retention). SEHMKMHITERE A 50 ms, 1
H4 0.6 V IWIE (1) Bkif I B a4 Set (Reset).
SRJG K FERE A 0.1 s, BR{E R 50 mV, fk b
110 s P EEHUK 17 %1 (read pulse) FRAE #7149
R-t th&k. Qi 8(d) fizw, Wirh J5 #5445 B 7E HRS
(LRS) B ERIEIT 1x10% s, B H BEFAGER A
PE. 3R 2 GEvh T AR SCHRARGE 1 45 R4 /NTO,
AR RRAM 254 221 s BHFF S S50 X Hm] %,
A% S 45 19 HEO, /NiO,/HEO, HEAR 284 A AL
ML = B B AR, i HLEA R A B

FIVEE /NG R FE RO . (Lt iy R R 3, A L[R]30 il
%1 NiO,/HfO, #ik S L a4, HfO,/NiO,/HfO,
HERRAS A IE IR 52 R AR A I

3.3 Hf0,/NiO,/HfO, HE#EE 4RI SBAH

GRS, BR T HfO,/NiO,/HfO,
HeMdn e, AT 3H1% T DL NiO, A NiO,/
HO, HE#% v BH B0 J2 10 2 L2 14. Jedefiib i
AR T RAE T RS04 -V LR, SR )5 ZEXCKT
BOARAR  EH AR 8 Set i BRI 0 -V R,
5 o BO AT MERLA 2 . WlEl 9(a) 7R, NiO,
WA ERILGR AL T LRS; 7E1E LK XU AE Reset
SRR, R I R A Set 3R, - VIR US4
F LT, Ry/ Ry, RAEZ 10, JEERM 32t < 70 4>
S 33k S PR A AR SO £ 1 NiO,, vl R R HA 45
R RS AL, AR AR K R B S
HnfE 9(b) Fias, NiO, MR 274 Set 1t TR )G
LRS 1 HRS B9 I- V &R R MR R (I < V),
X R NiO,, B 25 G RR AR T F AL . AH L2
T, 7 NiO,, i FEHH A HfO, il NiO,/HfO,
MR B0 46 AL T HRS, T HL 3K I8 BRI 2= 4
10 nA, Ry/ Ry HEFFE]>104, HEFRIZ M 104 4>
JEA, e 9(c) Fias. [EATERRE, MEETEIRK
BN, #80F Ry B#7A K. JRPJE Ni JEFA AR
NiO BbRiET sl A HBRERAME (-211.7 kJ /mol BY),
DAad A P A R A 25 AT I NiO, TR R 17 Ni Ji
T o 523 b B g AR R AR A SO 2B 1 NiO,
AT B T JHE 2 1 ) e 4R, 4255 T NiO, 1
2 25V PRI Ry Bt DA () HE R S 44 K

#£ 2 BFEAY/NIO, HERE RRAM 2040 i BT P RES 5L

Table 2.  Resistive switching parameters of RRAM cells based on various oxide/NiO, stacks.
Cell structure Switching type Vset/V VReset/V Ry/R;, Endurance Retention/s Ref.
NiFe/Al,043/NiO /Pt Unipolar 2.30—4.20 0.55—1.50 ~1x10® >1x10? 1x10? 6]
Pt/IrO,/NiO /TrO,/Pt Unipolar 1.43 0.41 S1x102  2x10? — [19]
Ag/HfO,/NiO/Pt Bipolar 0.20 -0.20 >1x10%  >5x10% >1x10? [20]
Pt/NiO/Mgy ¢Zng4,0/Pt Rectifying — 0.54—0.62 ~1x10° 1x102 6x 10 [21]
Au/BaTiO;/NiO /Pt Unipolar 2.00 1.00 — — — (22]
Ag/HfO,/nb-NiO/Pt Bipolar 0.16—0.38 -0.19— -0.38 ~1x10* 1.2x10° >1x10* [28]
Pt/BiFeO3/NiO/Pt Bipolar 1.00—1.50 -0.20— -0.60  >10 30 — [33]
Ag/NiO,/HfO,/Pt Bipolar 0.12—0.18 -0.02— -0.17 >1x10* ~1x10* >1x10*  Reference cell
Setl: 0.13—0.17 ~1x10°
Ag/HfO,/NiO,/HfO,/Pt Bipolar -0.03— -0.17 >3x10° ~1x10* This work
Set2: 0.21—0.40 ~1x10?
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Fig. 9. I-V loops in logarithmic-linear scale and replotted I-V curves in double-logarithmic scale near the Set process of RRAM cells
based on (a), (b) NiO, films, (c), (d) NiO,/HfO, and (e)-(h) HfO,/NiO,/HfO, stacks, respectively.
P AT EABBR ) NiO,/HO, HEF#R 14 Set 12
FEB LAY HRS A1 LRS By -V il £ th 0 i 2 vk
KFR (E 9(d)), XEH NiO,/HfO, HEAL#F {4t &
FLEERK - ALE]. & 9(e)—(h) FIHI, HO,/

NiO,/HfO, HEtk gs T W (W& 9(e), (f) i
REH (L 9(g), (n)i HRS Fl LRS KA #6
TR AL (E IRSHY 1V I 27T ¢
F (I oc V), 1G-S ] H far FR A R it F AL ) 91,
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HLANZ2 TR Vo B A, i3 AN 22 TR L. DA
WAL RIE B AT, BT LS E T
FEXIRN Y -V IR IARE W IRS, M2
$ M\ LRS Bk 7% [9] 3] HRS, 52 i Reset i 72, 0
E 10(d) Ui, #F Bkt fivdr, N2 HEO, K2
VE WA 2% 2, A B FEAR T & i i B2
HO, )2 38 it L #2025 T 48 4 Set2
TR, M AR I AR “PHERL Set 12727,

4 # #

ARSI ATE Pt (111) 42 Jm il A HEO, 22 i
b B PN SRS ) 5 1Y (111) 11 (100) s 5] PEALI 6]
1) NiO,, #HiE. NiO, il =2 A NiO Fl NiyOs,
DL R b Ni g, B DU & & 25 7. NiO,
(111) ki =BT, NiO,(111) iR mEU#E

(c) + Vsetz (d) -V

(a) P L (b) Setl 31 ##; (c) Set2 i ##; (d) Reset 11 ##

Fig. 10. Schematic illustrations of the resistive switching mechanism for the HfO,/NiO,/HfO, stack in the (a) diffusion; (b) Setl;

(c) Set2 and (d) Reset processes.

148401-9



¥ 1B ¥ Acta Phys. Sin.

Vol. 72, No. 14 (2023)

148401

ARG, DA A 1 R BEL T OC PR RE 3 25 . NiO,
(100) fi i 52 75 AT, NiO,(200) T8 5 2 1 A1 % F
# H Ry DI AE A S A BB . NiIO,(200) v
HfO, LK) HEO,/NiO,(200) /HFO, HErk#H14F
WA IR AE S R RO PR F B OCHRf M, 0.1 V i
FEBEHUR) Ry/ Ry, 2970 10°, B¢ A PE#EIE 10 s.
X — BF 499 8 4 | BH AR b 32 25 & TSR NiO,(200)
W R Y Vo T H A 22 78 RSN L R T
ol AT EG I, 5 )2 HEO,/NIO,
LT Kb 5 O K Ni0,(200) MR | 26 1 kb 5% B4 1Y
Ni JiF 56 42 A0 J5 T2 i e AR B AU 3 R
J5 7 B R A H R T B R B T A R A
HIO, 152 TV Jl s [ v ff BRI F 0, (AR 2510 &
A 9 Set i B2, BT LA HEO,/NiO,(200) /HfO,
HER AR AE TIE H e IR I B <P Set i
P71 = r BHAS T SRR SRR RS 19 — L B AT
KAEAT B T8 B A A2 — AR B AR L W] 4
T2 5 H RN ik i 2 2 i 5 A= ST F

Sk

[1] Lanza M, Sebastian A, Lu W D, Le Gallo M, Chang M F,
Akinwande D, Puglisi F M, Alshareef H N, Liu M, Roldan J
B 2022 Science 376 1066
[2] Zhou G D, Ji X Y, Li J, Zhou F C, Dong Z K, Yan B T, Sun
B, Wang W H, Hu X F, Song Q L, Wang L. D, Duan S K
2022 iScience 25 105240
[3] Zhou G D, Sun B, Hu X F, Sun L F, Zou Z, Xiao B, Qiu W
K, Wu B, Li J, Han J J, Liao L P, Xu C Y, Xiao G, Xiao L
H, Cheng J B, Zheng S H, Wang L. D, Song Q L, Duan S K
2021 Adv. Sci. 8 2003765
[4] Zhu W, Guo T T, Liu L, Zhou R R 2021 Acta Phys. Sin. 70
068502 (in Chinese) [AHi, FoMEHE, x|2%, JHZ€% 2021 P2
1% 70 068502]
[5] Gibbons J F, Beadle W E 1964 Solid-State Electron. 7 785
[6] Wang G Y, Hu L, Xia Y D, Li Q, Xu Q Y 2020 J. Magn.
Magn. Mater. 493 165728
[7] Xia WY, Sun X W, Yin Y F, Jia C H, Li G Q, Zhang W F
2020 AIP Adv. 10 105319
[8] ChuJ X, LiY, Fan X H, Shao H H, Duan W J, Pei Y L 2018
Semicond. Sci. Technol. 33 115007
[9] Jung K, Choi J, Kim Y, Im H, Seo S, Jung R, Kim D, Kim J
S, Park B H, Hong J P 2008 J. Appl. Phys. 103 034504
[10] Yuan X C, Wei X H, Dai B, Zeng H Z 2016 Appl. Surf. Sci.
362 506
[11] D'Aquila K, Liu Y Z, Iddir H, Petford-Long A K 2015 Phys.
Status Solidi RRL 9 301
[12] Lee S, Kim D, Eom H, Kim W B, Yoo B 2014 Jpn. J. Appl.
Phys. 53 024202
[13] Ge N N, Gong C H, Yuan X C, Zeng H Z, Wei X H 2018
RSC Adv. 8 29499
[14] LiJ C, Hou XY, Cao Q 2014 J. Appl. Phys. 115 164507
[15] Kim J, Na H, Lee S, Sung Y H, Yoo J H, Lee D S, Ko D H,

[16]
(17]

(18]

(19]

20]

(21]
(22]
(23]
(24]

(25]
(26]

(27]
(28]
29]

30]
(31]

(32]
33]

[34]

(35]
(36]
(37]
(38]

(39]
(40]

ja1]
j42]
143]
j44]

[45]

148401-10

Sohn H 2011 Curr. Appl. Phys. 11 €70

Kim J, Lee K, Sohn H 2009 J. Electrochem. Soc. 156 H881
Ma G K, Tang X L, Zhang H W, Zhong Z Y, Li X, Li J, Su
H 2017 J. Mater. Sci. 52 238

Huang Y C, Chen P Y, Chin T S, Liu R S, Huang C Y, Lai C
H 2012 Appl. Phys. Lett. 101 153106

Kim D C, Lee M J, Ahn S E, Seo S, Park J C, Yoo I K, Beak
IG, Kim HJ, Yim E K, Lee J E, Park S O, Kim H S, Chung
U I, Moon J T, Ryu B I 2006 Appl. Phys. Lett. 88 232106

Qiu X Y, Wang R X, Zhang Z, Wei M L, Ji H, Chai Y, Zhou
F C, Dai J Y, Zhang T, Li L T, Meng X S 2017 Appl. Phys.
Lett. 111 142103

Chen X M, Zhou H, Wu G H, Bao D H 2011 Appl. Phys. A-
Mater. Sci. Process. 104 477

Li S, Wei X H, Lei Y, Yuan X C, Zeng H Z 2016 Appl. Surf.
Sci. 389 977

Zhang T, Zhang Z, Chan C H, Li L T, Wei M L, Meng X S,
Dai J Y, Qiu XY 2018 J. Phys. D: Appl. Phys. 51 305105
Banerjee W, Kashir A, Kamba S 2022 Small 18 2107575

Park M, Jeon B, Park J, Kim S 2022 Nanomaterials 12 4206
Chen Y J, Chang K C, Chang T C, Chen H L, Young T F,
Tsai T M, Zhang R, Chu T J, Ciou J F, Lou J C, Chen K H,
Chen J H, Zheng J C, Sze S M 2014 IEEE Electron Device
Lett. 35 1016

Yan X Y, Wang X T, Wang D, et al. 2020 Nanotechnology 31
115209

Yin Y X, Xie Y S, Chen T, Xiang Y J, Zhou K, Qiu X Y
2023 Appl. Surf. Sci. 613 155994

Qiu XY, Wang R X, Li G Q, et al. 2017 Appl. Surf. Sci. 406
212

Kim K S, Winograd N 1974 Surf. Sci. 43 625

Khan M Q, Ahmad K, Alsalme A, Kim H 2022 Mater. Chem.
Phys. 289 126463

Smolarek M, Kierzkowska-Pawlak H, Kapica R, Fronczak M,
Sitarz M, Lesniak M, Tyczkowski J 2021 Catalysts 11 905

Luo J M, Zhang H N, Chen S H, Yang X D, Bu S L, Wen J
P 2016 Chem. Phys. Lett. 652 98

Pan F, Chen C 2014 Resistive Random Access Memory
Materials and Devices (Beijing: Science Press) p43 (in
Chinese) [Hl, Bl 2014 BAEFARES AR S a8 (FLat: Bl
L) 554371

Sze S M, Ng K K 2007 Physics of Semiconductor Devices (3rd
Ed.) (America: John Wiley & Sons, Inc.) p227

Siddik A, Halder P K, Garu P, et al. 2020 J. Phys. D: Appl.
Phys. 53 295103

Li Y, Fang P W, Fan X H, Pei Y L 2020 Semicond. Sci.
Technol. 35 055004

Zhang W, Lei J Z, Dai Y X, Zhang X H, Kang L. M, Peng B
W, Hu F R 2022 Nanotechnology 33 255703

LiZH,LiJC, Cui HP 2021 J. Alloys Compd. 858 158091
Ismail M, Chand U, Mahata C, Nebhen J, Kim S 2022 J.
Mater. Sci. Technol. 96 94

Wang W, Covi E, Lin Y H, et al. 2021 IEEE Trans. Electron
Devices 68 4342

Hong D S, Wang W X, Chen Y S, Sun J R, Shen B G 2014
Appl. Phys. Lett. 105 113504

Yuan F, Shen S S, Zhang Z G, Pan L Y, Xu J 2016
Superlattices Microstruct. 91 90

Razi P M, Angappane S, Gangineni R B 2021 Mater. Sci.
Eng. B-Adv. 263 114852

Sun B, Zhang X J, Zhou G D, Yu T, Mao S S, Zhu S H, Zhao
Y, Xia Y D 2018 J. Colloid Interface Sci. 520 19


http://doi.org/10.1126/science.abj9979
http://doi.org/10.1126/science.abj9979
http://doi.org/10.1126/science.abj9979
http://doi.org/10.1126/science.abj9979
http://doi.org/10.1126/science.abj9979
http://doi.org/10.1016/j.isci.2022.105240
http://doi.org/10.1016/j.isci.2022.105240
http://doi.org/10.1016/j.isci.2022.105240
http://doi.org/10.1016/j.isci.2022.105240
http://doi.org/10.1016/j.isci.2022.105240
http://doi.org/10.1002/advs.202003765
http://doi.org/10.1002/advs.202003765
http://doi.org/10.1002/advs.202003765
http://doi.org/10.1002/advs.202003765
http://doi.org/10.1002/advs.202003765
http://doi.org/10.7498/aps.70.20201961
http://doi.org/10.7498/aps.70.20201961
http://doi.org/10.7498/aps.70.20201961
http://doi.org/10.7498/aps.70.20201961
http://doi.org/10.7498/aps.70.20201961
http://doi.org/10.7498/aps.70.20201961
http://doi.org/10.7498/aps.70.20201961
http://doi.org/10.7498/aps.70.20201961
http://doi.org/10.7498/aps.70.20201961
http://doi.org/10.7498/aps.70.20201961
http://doi.org/10.1016/0038-1101(64)90131-5
http://doi.org/10.1016/0038-1101(64)90131-5
http://doi.org/10.1016/0038-1101(64)90131-5
http://doi.org/10.1016/0038-1101(64)90131-5
http://doi.org/10.1016/0038-1101(64)90131-5
http://doi.org/10.1016/j.jmmm.2019.165728
http://doi.org/10.1016/j.jmmm.2019.165728
http://doi.org/10.1016/j.jmmm.2019.165728
http://doi.org/10.1016/j.jmmm.2019.165728
http://doi.org/10.1016/j.jmmm.2019.165728
http://doi.org/10.1063/5.0007173
http://doi.org/10.1063/5.0007173
http://doi.org/10.1063/5.0007173
http://doi.org/10.1063/5.0007173
http://doi.org/10.1063/5.0007173
http://doi.org/10.1088/1361-6641/aae06c
http://doi.org/10.1088/1361-6641/aae06c
http://doi.org/10.1088/1361-6641/aae06c
http://doi.org/10.1088/1361-6641/aae06c
http://doi.org/10.1063/1.2837102
http://doi.org/10.1063/1.2837102
http://doi.org/10.1063/1.2837102
http://doi.org/10.1063/1.2837102
http://doi.org/10.1063/1.2837102
http://doi.org/10.1016/j.apsusc.2015.11.159
http://doi.org/10.1016/j.apsusc.2015.11.159
http://doi.org/10.1016/j.apsusc.2015.11.159
http://doi.org/10.1016/j.apsusc.2015.11.159
http://doi.org/10.1002/pssr.201510063
http://doi.org/10.1002/pssr.201510063
http://doi.org/10.1002/pssr.201510063
http://doi.org/10.1002/pssr.201510063
http://doi.org/10.1002/pssr.201510063
http://doi.org/10.7567/JJAP.53.024202
http://doi.org/10.7567/JJAP.53.024202
http://doi.org/10.7567/JJAP.53.024202
http://doi.org/10.7567/JJAP.53.024202
http://doi.org/10.7567/JJAP.53.024202
http://doi.org/10.1039/C8RA04784G
http://doi.org/10.1039/C8RA04784G
http://doi.org/10.1039/C8RA04784G
http://doi.org/10.1039/C8RA04784G
http://doi.org/10.1063/1.4873455
http://doi.org/10.1063/1.4873455
http://doi.org/10.1063/1.4873455
http://doi.org/10.1063/1.4873455
http://doi.org/10.1063/1.4873455
http://doi.org/10.1016/j.cap.2010.11.126
http://doi.org/10.1016/j.cap.2010.11.126
http://doi.org/10.1016/j.cap.2010.11.126
http://doi.org/10.1016/j.cap.2010.11.126
http://doi.org/10.1016/j.cap.2010.11.126
http://doi.org/10.1149/1.3231487
http://doi.org/10.1149/1.3231487
http://doi.org/10.1149/1.3231487
http://doi.org/10.1149/1.3231487
http://doi.org/10.1149/1.3231487
http://doi.org/10.1007/s10853-016-0326-5
http://doi.org/10.1007/s10853-016-0326-5
http://doi.org/10.1007/s10853-016-0326-5
http://doi.org/10.1007/s10853-016-0326-5
http://doi.org/10.1007/s10853-016-0326-5
http://doi.org/10.1063/1.4758482
http://doi.org/10.1063/1.4758482
http://doi.org/10.1063/1.4758482
http://doi.org/10.1063/1.4758482
http://doi.org/10.1063/1.4758482
http://doi.org/10.1063/1.2210087
http://doi.org/10.1063/1.2210087
http://doi.org/10.1063/1.2210087
http://doi.org/10.1063/1.2210087
http://doi.org/10.1063/1.2210087
http://doi.org/10.1063/1.4990089
http://doi.org/10.1063/1.4990089
http://doi.org/10.1063/1.4990089
http://doi.org/10.1063/1.4990089
http://doi.org/10.1063/1.4990089
http://doi.org/10.1007/s00339-011-6290-7
http://doi.org/10.1007/s00339-011-6290-7
http://doi.org/10.1007/s00339-011-6290-7
http://doi.org/10.1007/s00339-011-6290-7
http://doi.org/10.1007/s00339-011-6290-7
http://doi.org/10.1016/j.apsusc.2016.08.025
http://doi.org/10.1016/j.apsusc.2016.08.025
http://doi.org/10.1016/j.apsusc.2016.08.025
http://doi.org/10.1016/j.apsusc.2016.08.025
http://doi.org/10.1016/j.apsusc.2016.08.025
http://doi.org/10.1088/1361-6463/aace65
http://doi.org/10.1088/1361-6463/aace65
http://doi.org/10.1088/1361-6463/aace65
http://doi.org/10.1088/1361-6463/aace65
http://doi.org/10.1088/1361-6463/aace65
http://doi.org/10.1002/smll.202107575
http://doi.org/10.1002/smll.202107575
http://doi.org/10.1002/smll.202107575
http://doi.org/10.1002/smll.202107575
http://doi.org/10.1002/smll.202107575
http://doi.org/10.3390/nano12234206
http://doi.org/10.3390/nano12234206
http://doi.org/10.3390/nano12234206
http://doi.org/10.3390/nano12234206
http://doi.org/10.3390/nano12234206
http://doi.org/10.1109/LED.2014.2343331
http://doi.org/10.1109/LED.2014.2343331
http://doi.org/10.1109/LED.2014.2343331
http://doi.org/10.1109/LED.2014.2343331
http://doi.org/10.1109/LED.2014.2343331
http://doi.org/10.1088/1361-6528/ab597b
http://doi.org/10.1088/1361-6528/ab597b
http://doi.org/10.1088/1361-6528/ab597b
http://doi.org/10.1088/1361-6528/ab597b
http://doi.org/10.1016/j.apsusc.2022.155994
http://doi.org/10.1016/j.apsusc.2022.155994
http://doi.org/10.1016/j.apsusc.2022.155994
http://doi.org/10.1016/j.apsusc.2022.155994
http://doi.org/10.1016/j.apsusc.2022.155994
http://doi.org/10.1016/j.apsusc.2017.02.168
http://doi.org/10.1016/j.apsusc.2017.02.168
http://doi.org/10.1016/j.apsusc.2017.02.168
http://doi.org/10.1016/j.apsusc.2017.02.168
http://doi.org/10.1016/0039-6028(74)90281-7
http://doi.org/10.1016/0039-6028(74)90281-7
http://doi.org/10.1016/0039-6028(74)90281-7
http://doi.org/10.1016/0039-6028(74)90281-7
http://doi.org/10.1016/0039-6028(74)90281-7
http://doi.org/10.1016/j.matchemphys.2022.126463
http://doi.org/10.1016/j.matchemphys.2022.126463
http://doi.org/10.1016/j.matchemphys.2022.126463
http://doi.org/10.1016/j.matchemphys.2022.126463
http://doi.org/10.1016/j.matchemphys.2022.126463
http://doi.org/10.3390/catal11080905
http://doi.org/10.3390/catal11080905
http://doi.org/10.3390/catal11080905
http://doi.org/10.3390/catal11080905
http://doi.org/10.3390/catal11080905
http://doi.org/10.1016/j.cplett.2016.04.008
http://doi.org/10.1016/j.cplett.2016.04.008
http://doi.org/10.1016/j.cplett.2016.04.008
http://doi.org/10.1016/j.cplett.2016.04.008
http://doi.org/10.1016/j.cplett.2016.04.008
http://doi.org/10.1088/1361-6463/ab81d3
http://doi.org/10.1088/1361-6463/ab81d3
http://doi.org/10.1088/1361-6463/ab81d3
http://doi.org/10.1088/1361-6463/ab81d3
http://doi.org/10.1088/1361-6463/ab81d3
http://doi.org/10.1088/1361-6641/ab76b0
http://doi.org/10.1088/1361-6641/ab76b0
http://doi.org/10.1088/1361-6641/ab76b0
http://doi.org/10.1088/1361-6641/ab76b0
http://doi.org/10.1088/1361-6641/ab76b0
http://doi.org/10.1088/1361-6528/ac5e70
http://doi.org/10.1088/1361-6528/ac5e70
http://doi.org/10.1088/1361-6528/ac5e70
http://doi.org/10.1088/1361-6528/ac5e70
http://doi.org/10.1088/1361-6528/ac5e70
http://doi.org/10.1016/j.jallcom.2020.158091
http://doi.org/10.1016/j.jallcom.2020.158091
http://doi.org/10.1016/j.jallcom.2020.158091
http://doi.org/10.1016/j.jallcom.2020.158091
http://doi.org/10.1016/j.jallcom.2020.158091
http://doi.org/10.1016/j.jmst.2021.04.025
http://doi.org/10.1016/j.jmst.2021.04.025
http://doi.org/10.1016/j.jmst.2021.04.025
http://doi.org/10.1016/j.jmst.2021.04.025
http://doi.org/10.1016/j.jmst.2021.04.025
http://doi.org/10.1109/TED.2021.3095033
http://doi.org/10.1109/TED.2021.3095033
http://doi.org/10.1109/TED.2021.3095033
http://doi.org/10.1109/TED.2021.3095033
http://doi.org/10.1109/TED.2021.3095033
http://doi.org/10.1063/1.4895629
http://doi.org/10.1063/1.4895629
http://doi.org/10.1063/1.4895629
http://doi.org/10.1063/1.4895629
http://doi.org/10.1016/j.spmi.2015.12.044
http://doi.org/10.1016/j.spmi.2015.12.044
http://doi.org/10.1016/j.spmi.2015.12.044
http://doi.org/10.1016/j.spmi.2015.12.044
http://doi.org/10.1016/j.mseb.2020.114852
http://doi.org/10.1016/j.mseb.2020.114852
http://doi.org/10.1016/j.mseb.2020.114852
http://doi.org/10.1016/j.mseb.2020.114852
http://doi.org/10.1016/j.mseb.2020.114852
http://doi.org/10.1016/j.jcis.2018.03.001
http://doi.org/10.1016/j.jcis.2018.03.001
http://doi.org/10.1016/j.jcis.2018.03.001
http://doi.org/10.1016/j.jcis.2018.03.001
http://doi.org/10.1016/j.jcis.2018.03.001

#) 32 % 3R Acta Phys. Sin. Vol. 72, No. 14 (2023) 148401

Tri-level resistive switching characteristics and conductive
mechanism of HfO,/NiO,/HfO, stacks”

Chen Tao!  Zhang Tao!  Yin Yuan-Xiang!
Xie Yu-Sha!)  Qiu Xiao-Yan DT
1) (School of Physical Science and Technology, Southwest University, Chongging 400715, China)
2) (Chongging Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongging 400715, China)

( Received 7 March 2023; revised manuscript received 28 April 2023 )

Abstract

With the extensive integration of portable computers and smartphones with “ Internet of Things”
technology, further miniaturization, high reading/writing speed and big storage capacity are required for the
new-generation non-volatile memory devices. Compared with traditional charge memory and magnetoresistive
memory, resistive random access memory (RRAM) based on transition metal oxides is one of the promising
candidates due to its low power consumption, small footprint, high stack ability, fast switching speed and multi-
level storage capacity.

Inspired by the excellent resistive switching characteristics of NiO and HfO,, NiO, films are deposited by
magnetron sputtering on the Pt(111) layer and the polycrystalline HfO, film, respectively. Their micro-
structures, resistive switching characteristics and conductive mechanisms are studied. X-ray diffractometer data
show the (111) preferred orientation for the NiO, film deposited on the Pt(111) layer but the (100) preferred one
for the film deposited on the polycrystalline HfO, layer. X-ray photoelectron depth profile of Ni 2p core level
reveals that the NiO, film is the mixture of oxygen-deficient NiO and Ni,Os. NiO,(111) films show bipolar
resistive switching (RS) characteristics with a clockwise current-voltage (I-V) loop, but its ratio of the high
resistance to the low resistance (Ry/Ry,) is only ~10, and its endurance is also poor. The NiO,(200)/HfO, stack
exhibits bipolar RS characteristics with a counterclockwise I-V loop. The Ry/R; is greater than 10, the
endurance is about 10* cycles, and the retention time exceeds 10* s. In the initial stage, the HfO,/NiO,(200)/
HfO, stack shows similar bi-level RS characteristics to the NiO,(200)/HfO, stack. However, in the middle and
the last stages, its I-V curves gradually evolve into tri-level RS characteristics with a “two-step Setting process”
in the positive voltage region, showing potential applications in multilevel nonvolatile memory devices and
brain-like neural synapses. Its I-V curves in the high and the low resistance state follow the relationship of
ohmic conduction (I o V'), while the I-V curves in the intermediate resistance state are dominated by the
space-charge-limited-current mechanism (I « V?). The tri-level RS phenomena are attributed to the coexistence
of the oxygen-vacancy conductive filaments in the NiO,(200) film and the space charge limited current in the

upper HfO, film.

Keywords: HfO,/NiO,/HfO, stack, tri-level resistive state, two-step setting process
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