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Fig. 1. Technical roadmap of the cosmic rays component

identification model.
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Table 1.  Optimal hyperparameters of decision tree identifying different components.
FIARM Y
S N
By A% AR Bk B
criterion Entropy Entropy Entropy Entropy Entropy
max_ depth 21 29 40 28 19
min_samples_ split 2 4 7 2 4
min_weight fraction leaf 0 0 0 0 0
min_samples_ leaf 1 1 1 1 1
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Fig. 2. Flow chart of random forest algorithm modeling.
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Table 2.  Optimal hyperparameters of random forest identifying different components.
- HpRA
By A% AR Bk Bt
criterion Gini Gini Entropy Entropy Entropy
n_ estimators 48 88 30 15 21
max_ depth 20 26 30 27 23
min_samples_ split 2 2 1 2
min_samples_leaf 1 1 1 1
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Fig. 3. Structure diagram of BP neural network in this paper.
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Table 3. BP neural network (identifying helium

hidden layer nodes verification results.

— (ST RN
5 6 7 9 10 11 12 13
AL 20000 20000 20000 25000 27000 20000 20000 20000 20000
HHEAUCH 0.5503 0.5045 0.5293 0.5593 0.6329 0.6276 0.6177 0.6142 0.6418
Qi JTTA ¥ 0.82 0.29 0.58 1.26 1.25 1.22 1.26 1.34
F# 4 BP MEMSKEGIAFBR BB S R G
Table 4.  Optimal hyperparameters of BP neural network identifying different components.
s EE7N %
BT AR Bk Btz
B2 5 R AR 13 13 13 11
WIRF 2% 0.01 0.01 0.01 0.01
AL 20000 20000 20000 20000
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Fig. 4. Results of three cosmic rays identification models identifying helium using 10-fold cross validation method.
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fication models identifying helium.
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Table 5.  Efficiency and purity of three cosmic rays identification models identifying different components.
_ B/ % 4lE /%
SRy Wix - : - :
BPHIZ 4 PR Rl AL AR BPHIZ M 4% PR RifAL AR
P 64.9 74.8 75.7 74.4 77.6 91.1
A% 36.0 83.3 79.3 52.8 80.1 95.7
AR 10.3 93.4 81.5 64.5 94.8 99.4
BERRRE 16.9 91.8 78.7 69.9 92.1 95.8
R 82.8 88.1 91.1 87.5 88.7 93.5
F 6  CRFEHERR LRSI S AUC K Q fJi T
Table 6. AUC and @ quality factor values of three cosmic rays identification models identifying different components.
_ AUC Q AT
EE7NWix - - - :
BPHIZ M 45 PR RfATLAR A BP#IZ: M4 P FEHLARAR
e 0.7962 0.8555 0.9247 2.71 3.15 5.42
A% 0.6418 0.8805 0.9537 1.34 3.75 8.38
AR 0.5444 0.9612 0.9739 0.87 7.55 20.1
BERRRE 0.5754 0.9504 0.9531 1.25 6.54 8.39
Btz 0.8751 0.8952 0.9380 2.96 2.97 4.40
2) £ FH LR SR A S5 ) A 10 45 531 1 43t % T e B .
S (BERIRE . B SR sk, dorm 4 BROE

A AT LA E] 90% L L 3) I 3 Flr S il 4 1Y
SR T (A T, DR BEALARARAE S
R S AT SR AE 74% LA L, SRR 77% LA
I T 2 X 24 AR AN SR B ORI
POEAR ARSI b3 & RSN o N=TND 0 i o[
HaifEre 64% L) L.

B, A< SCHR I 45 B3 S 25 AR B 3 2
RORK I P F8 bR AUC 5 52 15 e F T 40 5,
ST QME (W 6 iR, S50 1) B
PLARMR G AE A 1L o3 ) Fh 4l B 34 vT 3K 8] 90% LA
I, QSRR A, BT 245 o B e
e AP FP S BT 2) ORI BEIATE TR o (B
BRAE . IRAER) SIERRRATIR 90% DLk, Q T
HFAE 6 LA FEFR R B 43 v () S 500 IE A R
ik 85% LA I, Q fhJlRINFAE 3 4 4; 3) WA M4
FORAEE R (%) S50 B — @ e, H 51
IERRIRE] 87%, Q FhFH TR 2.96.

Bk, KIUA | BE LA SRS U7 78 4]
A B S O S i A 2 52 B IR A SR )
HAEV R 12, ASC H AT R AR S
IS AL, KU L SR TSR, T
— IR PR IRl 4R S PAL VB IE ML AR~ )
ERIR BN

AR SORE DRI | BEHLRR AR . BP M 22 [0 2 5503
JOLFHAE T o b1 KN, AT XA R Rk
FHBSEAAL IR, LS 8 0 i TE A 3 S
IR, SLRRARR], Hlavsr ) AT T 4
KL B ) B BRI R, I RTASSCH
FRE T BP ML B M BELAR PRAE X T
TR LT T IR BRI R AT 1%
X LR B AT, T E NIRRT H]
ZHGE T AL, NI, TR TAE R IA
ST S S PRI WL o, i — 2B A LA
Sk, BRTPRL T SERIRE ST, ISR SR AR R
AL e ) SR T 2R 50 P

S ik

Hu H B, Wang X Y, Liu S M 2018 Chin. Sci. Bull. 63 2440
(in Chinese) [FAZLH, TAF T, XU 2018 Fl#i@E iz 63 2440)
Hu H B, Guo Y Q 2016 Chin. Sci. Bull. 61 1188 (in Chinese)
[BALTIE, 3% UK 2016 BlaFi R 61 1188]

Cao Z 2022 Chin. Sci. Bull. 67 1558 (in Chinese) [&# 2022
Bleimdl 67 1558)

Cao Z, Chen M J, Chen S Z, Hu H B, Liu C, Liu Y, Ma L L,
Ma X H, Shen X D, Wu H R, Xiao G, Yao Z G, Yin L Q,
Zha M, Zhang S S 2019 Acta Astron. Sin. 60 3 (in Chinese)
(U7, BRI, DR, SHZL0E, KU, XU, THRE, Thk e, 1%
REAR, 2%, BN, phGIE, YTy, A, skAFIL 2019 K30
fiz 60 3]

140202-7


http://doi.org/10.1360/N972018-00084
http://doi.org/10.1360/N972018-00084
http://doi.org/10.1360/N972018-00084
http://doi.org/10.1360/N972018-00084
http://doi.org/10.1360/N972018-00084
http://doi.org/10.1360/N972018-00084
http://doi.org/10.1360/N972018-00084
http://doi.org/10.1360/N972018-00084
http://doi.org/10.1360/N972018-00084
http://doi.org/10.1360/N972018-00084
http://doi.org/10.1360/N972015-00702
http://doi.org/10.1360/N972015-00702
http://doi.org/10.1360/N972015-00702
http://doi.org/10.1360/N972015-00702
http://doi.org/10.1360/N972015-00702
http://doi.org/10.1360/N972015-00702
http://doi.org/10.1360/N972015-00702
http://doi.org/10.1360/N972015-00702
http://doi.org/10.1360/N972015-00702
http://doi.org/10.1360/N972015-00702
http://doi.org/10.1360/TB-2022-0160
http://doi.org/10.1360/TB-2022-0160
http://doi.org/10.1360/TB-2022-0160
http://doi.org/10.1360/TB-2022-0160
http://doi.org/10.1360/TB-2022-0160
http://doi.org/10.1360/TB-2022-0160
http://doi.org/10.1360/TB-2022-0160
http://doi.org/10.1360/TB-2022-0160
http://doi.org/10.1360/TB-2022-0160
http://doi.org/10.1360/TB-2022-0160
http://doi.org/10.15940/j.cnki.0001-5245.2019.03.019
http://doi.org/10.15940/j.cnki.0001-5245.2019.03.019
http://doi.org/10.15940/j.cnki.0001-5245.2019.03.019
http://doi.org/10.15940/j.cnki.0001-5245.2019.03.019
http://doi.org/10.15940/j.cnki.0001-5245.2019.03.019
http://doi.org/10.15940/j.cnki.0001-5245.2019.03.019
http://doi.org/10.15940/j.cnki.0001-5245.2019.03.019
http://doi.org/10.15940/j.cnki.0001-5245.2019.03.019
http://doi.org/10.15940/j.cnki.0001-5245.2019.03.019
http://doi.org/10.15940/j.cnki.0001-5245.2019.03.019
http://doi.org/10.15940/j.cnki.0001-5245.2019.03.019

#) 32 2 3R Acta Phys. Sin. Vol. 72, No. 14 (2023)

140202

[5]

(6]

[7]

(8]

(9]
[10]

1]

(12]

[13]

Li C, Wang W B, Chen P F 2022 Sci. China Phys. Mech. 52
16 (in Chinese) [Z=)11, £ 3CHE, BRME € 2022 i EFR:: Py
s K 52 16]

Zhang F, Liu H, Zhu F R 2022 Acta Phys. Sin. 71 249601 (in
Chinese) [fK3, XI5E, BURE 2022 PHI2EAR 71 249601]

Chen X L 2020 M. S. Thesis (Beijing University of Chinese
Academy of Sciences) (in Chinese) [Mi75#k 2020 A% 12~ i
3C (Jent: ERREERR)

Yan Y T, Bi W J 2023 Chin. J. Manag. Sci. Online First (in
Chinese) (in Chinese) [“FFF, 52307 2023 f EEHE 2 K
%K [2023-02-03]]

Herrera L J, Todero Peixoto C J, Banos O, Carceller J M,
Carrillo F, Guillén A 2020 Entropy 22 998

Pang L G, Zhou K, Su N, Petersen H, Stocker H, Wang X N
2018 Nat. Commaun. 9 210

Gao Z P, Wang Y J, Li Q F, Liu L 2022 Sci. China Phys.
Mech. 52 252010 (in Chinese) [f= M5, FAFE, 2204, X#
2022 HERLA: YR Ji% RICF 52 252010]

Luo S J, Han S Z 2023 J. Chin. Comp. Syst. Online First (in
Chinese) (in Chinese) [J§A:7, 847 H 2023 /NI EHL R
45 M4 HE % [2023-03-05]]

Wang Y D, Wang Z H, Zhou R, Chen X L, Qin X, Liu J 2019
Nucl. Electron. Detect. Technol. 39 567 (in Chinese) [ £,
FE, TR, B, A, XA 2019 BT S HREAR
39 567)

(14]

(15]
[16]
(17]

(18]
(19]

(20]

[21]

(22]

(23]

140202-8

Li W, Long L C, Liu J Y, Yang Y 2022 Acta Phys. Sin. 71
060202 (in Chinese) B2, IR, XIFHE, Bt 2022 PP
7 71 060202]

Cui J J, Hu Z W, Ren P 2022 Inf. Sci. 40 90 (in Chinese) [#:
i, I, R 2022 15 40 90]

Li Y N 2018 Inf. Sci. 36 80 (in Chinese) 225 5 2018 1R EH
2 36 80)

Lin S, Luo W 2019 Multivar. Behav. Res. 54 578

Song S, Park C G 2019 Sustainability 11 6976

Xiao Y, Guo Y H, LiM W, Guo Y S, Sun F 2022 J. Beijing
Normal Univ. (Nat. Sci.) 58 261 (in Chinese) [M %%, ¥ &,
ZEU R, A, P 2022 JUEUITE KR 2440 (HARBRERR) 58
261]

Lu X B, Zhang Y Y, Yang G C, Xing J X 2022 Inf. Sci. 41
1059 (in Chinese) [F/NEE, sk#%k, Bl 17HE8E 2022 i
2#4it 41 1059)

Pei Y L, Li D D, Xue W X 2020 Concurr. Comp-Pract E 32
e5515

Yuan L, Yang X S, Wang B Z 2019 Acta Phys. Sin. 68
170503 (in Chinese) [Be3fk, #2#s, £Ferfr 2019 Y740 68
170503]

Zhao Z Y, Liu Y F, Liu S C, Ma H B 2023 J. Beijing Univ.
Aeronaut. Astronaut (Soc. Sci. Ed.) Online First (in Chinese)
PR TE, XUFIR, X A7, Sl 2023 JE Rt as il KR4k
(2B M4 E & [2023-03-05]]


http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.1360/SSPMA-2021-0245
http://doi.org/10.7498/aps.71.20221556
http://doi.org/10.7498/aps.71.20221556
http://doi.org/10.7498/aps.71.20221556
http://doi.org/10.7498/aps.71.20221556
http://doi.org/10.7498/aps.71.20221556
http://doi.org/10.7498/aps.71.20221556
http://doi.org/10.7498/aps.71.20221556
http://doi.org/10.7498/aps.71.20221556
http://doi.org/10.7498/aps.71.20221556
http://doi.org/10.7498/aps.71.20221556
https://doi.org/10.16381/j.cnki.issn1003-207x.2020.0816
https://doi.org/10.16381/j.cnki.issn1003-207x.2020.0816
https://doi.org/10.16381/j.cnki.issn1003-207x.2020.0816
https://doi.org/10.16381/j.cnki.issn1003-207x.2020.0816
http://doi.org/10.3390/e22090998
http://doi.org/10.3390/e22090998
http://doi.org/10.3390/e22090998
http://doi.org/10.3390/e22090998
http://doi.org/10.3390/e22090998
http://doi.org/10.1038/s41467-017-02726-3
http://doi.org/10.1038/s41467-017-02726-3
http://doi.org/10.1038/s41467-017-02726-3
http://doi.org/10.1038/s41467-017-02726-3
http://doi.org/10.1038/s41467-017-02726-3
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
http://doi.org/10.1360/SSPMA-2021-0308
https://doi.org/10.20009/j.cnki.21-1106/TP.2022-0040
https://doi.org/10.20009/j.cnki.21-1106/TP.2022-0040
https://doi.org/10.20009/j.cnki.21-1106/TP.2022-0040
https://doi.org/10.20009/j.cnki.21-1106/TP.2022-0040
http://doi.org/10.7498/aps.71.20211625
http://doi.org/10.7498/aps.71.20211625
http://doi.org/10.7498/aps.71.20211625
http://doi.org/10.7498/aps.71.20211625
http://doi.org/10.7498/aps.71.20211625
http://doi.org/10.7498/aps.71.20211625
http://doi.org/10.7498/aps.71.20211625
http://doi.org/10.7498/aps.71.20211625
http://doi.org/10.7498/aps.71.20211625
http://doi.org/10.7498/aps.71.20211625
http://doi.org/10.13833/j.issn.1007-7634.2022.05.012
http://doi.org/10.13833/j.issn.1007-7634.2022.05.012
http://doi.org/10.13833/j.issn.1007-7634.2022.05.012
http://doi.org/10.13833/j.issn.1007-7634.2022.05.012
http://doi.org/10.13833/j.issn.1007-7634.2022.05.012
http://doi.org/10.13833/j.issn.1007-7634.2022.05.012
http://doi.org/10.13833/j.issn.1007-7634.2022.05.012
http://doi.org/10.13833/j.issn.1007-7634.2022.05.012
http://doi.org/10.13833/j.issn.1007-7634.2022.05.012
http://doi.org/10.13833/j.issn.1007-7634.2022.05.012
http://doi.org/10.13833/j.issn.1007-7634.2018.04.014
http://doi.org/10.13833/j.issn.1007-7634.2018.04.014
http://doi.org/10.13833/j.issn.1007-7634.2018.04.014
http://doi.org/10.13833/j.issn.1007-7634.2018.04.014
http://doi.org/10.13833/j.issn.1007-7634.2018.04.014
http://doi.org/10.13833/j.issn.1007-7634.2018.04.014
http://doi.org/10.13833/j.issn.1007-7634.2018.04.014
http://doi.org/10.13833/j.issn.1007-7634.2018.04.014
http://doi.org/10.13833/j.issn.1007-7634.2018.04.014
http://doi.org/10.13833/j.issn.1007-7634.2018.04.014
http://doi.org/10.13833/j.issn.1007-7634.2018.04.014
http://doi.org/10.1080/00273171.2018.1552555
http://doi.org/10.1080/00273171.2018.1552555
http://doi.org/10.1080/00273171.2018.1552555
http://doi.org/10.1080/00273171.2018.1552555
http://doi.org/10.1080/00273171.2018.1552555
http://doi.org/10.3390/su11246976
http://doi.org/10.3390/su11246976
http://doi.org/10.3390/su11246976
http://doi.org/10.3390/su11246976
http://doi.org/10.3390/su11246976
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.12202/j.0476-0301.2021196
http://doi.org/10.3772/j.issn.1000-0135.2022.10.006
http://doi.org/10.3772/j.issn.1000-0135.2022.10.006
http://doi.org/10.3772/j.issn.1000-0135.2022.10.006
http://doi.org/10.3772/j.issn.1000-0135.2022.10.006
http://doi.org/10.3772/j.issn.1000-0135.2022.10.006
http://doi.org/10.3772/j.issn.1000-0135.2022.10.006
http://doi.org/10.3772/j.issn.1000-0135.2022.10.006
http://doi.org/10.3772/j.issn.1000-0135.2022.10.006
http://doi.org/10.3772/j.issn.1000-0135.2022.10.006
http://doi.org/10.3772/j.issn.1000-0135.2022.10.006
https://onlinelibrary.wiley.com/doi/10.1002/cpe.5515
https://onlinelibrary.wiley.com/doi/10.1002/cpe.5515
https://onlinelibrary.wiley.com/doi/10.1002/cpe.5515
https://onlinelibrary.wiley.com/doi/10.1002/cpe.5515
http://doi.org/10.7498/aps.68.20190327
http://doi.org/10.7498/aps.68.20190327
http://doi.org/10.7498/aps.68.20190327
http://doi.org/10.7498/aps.68.20190327
http://doi.org/10.7498/aps.68.20190327
http://doi.org/10.7498/aps.68.20190327
http://doi.org/10.7498/aps.68.20190327
http://doi.org/10.7498/aps.68.20190327
https://doi.org/10.13766/j.bhsk.1008-2204.2021.0707
https://doi.org/10.13766/j.bhsk.1008-2204.2021.0707
https://doi.org/10.13766/j.bhsk.1008-2204.2021.0707
https://doi.org/10.13766/j.bhsk.1008-2204.2021.0707
https://doi.org/10.13766/j.bhsk.1008-2204.2021.0707

) 32 2 3R Acta Phys. Sin. Vol. 72, No. 14 (2023) 140202

Application of machine learning in cosmic ray particle
identification”

Liu Ye! Niu He-Ran!  Li Bing-Bing?  Ma Xin-Hua®%  Cui Shu-Wang T
1) (School of Management Science and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China)
2) (College of Physics, Hebei Normal University, Shijiazhuang 050024, China)
3) (Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China)
4) (TIANFU Cosmic Ray Research Center, Chengdu 610000, China)

( Received 7 March 2023; revised manuscript received 8 April 2023 )

Abstract

Machine learning algorithms can learn the rules and patterns of big data through computers, excavate
potential information hidden behind the data, and be widely used to solve classification, regression, clustering,
and other problems. Firstly, this paper uses CORSIKA software to simulate the process of cosmic ray cascade
shower in the atmosphere, generating information such as the initial energy, zenith angle, azimuth angle of
cosmic ray particles. Then, this paper uses the Geant4 toolkit to conduct thermal neutron detector response
simulation, generating 4000 particles in each of proton, helium, CNO, MgAlSi and iron. Based on the
experimental simulation data of thermal neutron detector, this paper constructs machine learning models for
identifying cosmic ray particles by using decision tree (DT), random forest (RF) and BP neural network (BP
NN) respectively. For each particle, all the machine learning algorithms are used for model training based on
the simulation data. The cross grid search method is used to adjust the hyper parameters of each machine
learning algorithm. The AUC value and @ quality factor value of each algorithm are used as evaluation indexes
for particle composition identification. The AUC wvalue is a general indicator for evaluating algorithm
performance in machine learning and the @ quality factor value is an evaluation index commonly used in the
field of high energy physics. The Experimental results show that different machine learning models have great
influence on particle prediction accuracy, and the random forest cosmic ray particle identification model has
sufficient accuracy and generalization capability. In the test, the decision tree algorithm adjusted by cross grid
search method is sensitive to the medium components (CNO and MgAlSi). The AUC values of the algorithm
are all above 0.95 and the @ quality factor values are all above 6. The random forest algorithm adjusted by the
cross grid search method has the best effect on the identification of cosmic ray particles. The AUC values of the
algorithm are all more than 0.92 and the @ quality factor values are all more than 4. The BP neural network
algorithm is only sensitive to proton and iron. This study provides a new method and selection for identifying
and screening the cosmic ray particles and it also provides a new idea for the following measurement of cosmic

ray energy spectrum by thermal neutron detector.
Keywords: cosmic rays, particle identification, machine learning, random forest
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