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基于热中子探测器实验模拟数据, 使用决策树 (decision tree, DT)、随机森林 (random forest, RF)和 BP

神经网络 (back-propagation neural network, BPNN)构建了宇宙线粒子鉴别机器学习模型, 对每种粒子分别

使用不同的机器学习算法基于模拟数据进行模型训练, 并针对算法进行超参数调整, 将每种算法的 AUC值

和 Q 品质因子作为粒子成分鉴别的评价指标. 实验结果表明, 不同机器学习模型对粒子预测精度影响很大.

在测试检验中, 经过交叉网格搜索方法调参后的决策树鉴别模型对中成分 (碳氮氧和镁铝硅)比较敏感, 鉴别

模型 AUC值均在 0.95以上, Q 品质因子均大于 6; 经交叉网格搜索方法调参后的随机森林鉴别模型对于宇宙

线粒子鉴别的效果最好, 所有粒子鉴别模型的 AUC值均大于 0.92且 Q 品质因子均在 4以上; BP神经网络算

法只对质子和铁核比较敏感. 本研究对宇宙线粒子鉴别和筛选提供了新的方法和选择, 可为热中子探测器后

续开展宇宙线能谱测量提供新思路.
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 1   引　言

宇宙线是唯一来自外太空的物质样本, 本质是

高能带电粒子流, 能量从 keV到 EeV跨越 17个量

级, 并且在传播过程中会与星际物质相互作用产生

少量次级核子和反质子、反电子、伽马光子、中微

子等次级宇宙线粒子 [1−3]. 在宇宙线研究领域中,

宇宙线能谱结构和次级宇宙线粒子成分的精确测

量是解决宇宙线起源、加速、传播机制等问题的关

键 [4,5]. 目前, 多个实验已经测量到了宇宙线能谱中

的“膝区”结构, 但是“膝区”的确切位置及成分存在

较大差异 [6], 因此精确鉴别宇宙线中的粒子成分十

分重要, 是开展相关科学研究的重要基础和前提.

传统宇宙线成分鉴别大多基于多变量分析方

法完成, 该方法需要人工选取特征, 耗费人力资源

的同时容易丢失数据信息 [7], 而机器学习方法能直

接在原始数据的基础上进行分析, 节省人力资源的

同时尽可能挖掘数据的信息. 机器学习是人工智能

的分支之一, 是统计学、人工智能和计算机科学交

叉的研究领域, 可以通过学习多源、复杂的数据内

在模式和结构, 挖掘隐藏在数据背后的信息, 并用

于解决分类、回归、聚类等复杂问题 [8]. 随着机器学

习的不断完善和计算能力的提升, 机器学习算法也

逐渐帮助科研人员分析和处理大量的物理学相关

数据. Herrera 等 [9] 评估了人工神经网络 (ANN)、
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极端梯度提升树 (XGBoost)、支持向量机 (SVM)

和 K近邻 (KNN)算法对超高能宇宙线成分的分

类效果, 并使用五折交叉验证的方法对算法的超参

数进行优化, 结果表明极端梯度提升树对所有成分

都表现出优异性能, 准确率和 f1评分均为 0.97, 且

运行时间最短, 支持向量机的准确率和 f1评分均

为 0.94, 但是运行时间较长, 人工神经网络和 K近

邻算法效果稍差; Pang等 [10] 在高能核物理领域利

用卷积神经网络 (CNN)模型, 将不同状态方程下

相对论流体力学演化末态的粒子分布作为神经网

络输入, 将演化使用的和物质状态方程种类作为标

签做监督学习, 将寻找 QCD相变临界点的任务转

化为两个相变区域分类问题 ; 高泽鹏等 [11] 使用

LightGBM决策树算法训练初始化过程中有无形

变效应给出的反应末态的自由质子、带点碎片及

 的  谱, 通过碰撞末态数据反推初态结

构, 分类的准确率在 60%—70%之间, 同时, 此研

究还通过 LightGBM决策树算法计算了特征重要

性, 发现弹靶快度区形变的带电碎片敏感于弹靶核

的初始形变, 与相关理论分析相一致.

本研究以热中子在探测器模拟数据为研究对

象, 以粒子的原初能量、天顶角、电子数、中子数及

芯距 5个量作为特征, 应用决策树 (decision tree,

DT)、随机森林 (random forest, RF)和 BP神经网

络 (back-propagation neural network, BPNN) 3种

机器学习算法, 构建了 3种宇宙线粒子鉴别模型,

并调整 3种算法的超参数以提高其对宇宙线成分

鉴别能力, 然后使用相关评价指标对这 3种模型的

结果进行评估, 得到了性能最优的鉴别模型. 最后,

用验证数据验证了最优鉴别模型的精度和泛化能

力, 为后续开展宇宙线能谱精确测量提供依据和参考.

 2   研究方法

本文选择决策树、随机森林和 BP神经网络

3种常用的机器学习算法建立宇宙线粒子鉴别模

型. 实验中, 首先通过宇宙线粒子在探测器上的坐

标计算出粒子的芯距, 并选择宇宙线粒子原初能

量 (E0)、天顶角 (theta)、中子数 (neutron_total)、电

子数 (MIPs_total)和芯距 (core_distance), 5个

量作为成分敏感特征值, 然后将 5种成分的数据混

合在一起, 定义模型输出值若为“0”则对应目标成

分, 若为“1”则对应其他成分, 并将数据按 4∶1∶5

的比例随机的划分为训练集、测试集和验证集, 分

别用于模型的训练、测试和泛化能力的检验, 并且

在训练过程中根据模型和粒子成分鉴别的评价指

标, 不断的对模型的超参数进行调整, 筛选出最优

鉴别模型. 本文中机器学习模型的训练、测试和验

证均基于 Python语言中 scikit-learn和 Pytorch

库实现, 技术路线图如图 1所示.

  

特征选择

热中子探测器
实验模拟数据

模型训练、
测试数据

模型验证数据

通过坐标计算
粒子的芯距

宇宙线成分
敏感特征值

计算特征
相关系数

超参数调整 机器学习算法

宇宙线成分
鉴别模型

图 1    宇宙线成分鉴别模型技术路线图

Fig. 1. Technical  roadmap  of  the  cosmic  rays  component

identification model.
 

为评估各机器学习鉴别模型对数据集分类的

效果, 本文使用算法 AUC值和宇宙线研究领域中

的 Q 品质因子作为检验算法分类效果的评价指标.

AUC值等于 ROC曲线下方面积, 是机器学习中

一个通用的评价算法性能的指标, 用于权衡正确分

类的收益和错误分类的代价之间的关联 [12]. ROC

曲线分别以假正率 (FPR)和真正率 (TPR)为 x 轴

和 y 轴: 

TPR =
TP

TP + FN
, (1)

 

FPR =
FP

TN + FP
, (2)

其中, TP表示真正类, 即被模型预测为正类的正

样本数; FP为假正类, 即被模型预测为正类的负

样本数; TN为真负类, 即被模型预测为负类的负

样本数; FN为假负类, 即被模型预测为负类的正

样本数.

热中子探测器模拟数据鉴别是一个分类问题,

但不能只使用统计学中常用的准确率判别模型分
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类好坏, 因此本文使用高能物理领域中一个常用的

评价指标 Q 品质因子对模型区分效果进行衡量 [7],

其定义为 

Q =
Perp√
Pere

, (3)

Perp Pere其中  为挑选目标成分的保留率,   为宇宙线

其他成分的保留率.

 2.1    数据集建立及预处理

本文使用的热中子探测器模拟数据由 COR-

SIKA软件模拟生成, 该软件包含多种粒子反映模

型, 可以模拟粒子到达不同海拔高度的相关信息,

包括粒子种类、能量、天顶角等, 这些参数已经得

到了实验证实, 应用在众多宇宙线相关领域的实验

中 [13]. 热中子探测器模拟分为两部分, 首先利用

CORSIKA软件模拟宇宙线在大气中级联簇射过

程, 产生宇宙线粒子原初能量、天顶角、方位角及

粒子位置等信息, 然后利用 Geant4工具包开展热

中子探测器响模拟. 最终热中子探测器模拟数据为

质子、氦核、铁核、镁铝硅、碳氮氧, 每种成分各

4000个事例, 能量范围为 1—10 PeV, 天顶角 0°—

60°, 方位角为 0°—360°.

冗余特征可能会造成模型效率低或者过拟合

等问题 [14], 因此本文在构建特征过程中首先根据

粒子位置信息计算出粒子到探测器中心的芯距, 并

用其代替粒子其他位置信息, 作为特征加入到模型

训练和测试过程. 因此, 本文在建模过程中使用宇

宙线粒子的原初能量、天顶角、电子数、中子数及

芯距 5个量作为特征.

 2.2    机器学习模型构建

 2.2.1    决策树模型构建

决策树算法 (DT)是一种经典的机器学习算

法, 因其结构简单、学习成本低且可解释性强, 在

机器学习领域有着广泛应用, 常用的决策树算法

有 ID3, C4.5, CART算法等 [15]. 决策树的构建过

程就是根据数据的不同特征, 将数据划分到不同区

域, 使得同一区域的数据尽可能是同一种类型. 决

策树算法构建过程是选择具有较强分类能力的特

征生成决策树, ID3算法是采用信息增益作为选择

选择特征的度量, 而 C4.5算法采用信息增益比 [16].

但由于决策树算法具有强大的建模能力, 因此会产

生过拟合的问题, CART算法在特征选择时以基

尼系数为度量, 然后对所有属性可能进行遍历, 选

择划分子集后基尼系数最小的节点进行分支, 这样

可以简化树的结构, 避免过拟合问题 [17]. 在信息论

中, 信息熵用于描述变量分布的不确定性, 决策树

在划分子树时以信息熵为基础, 进行相关计算, 然

后选择特征划分子树. 对于离散型随机变量 D, 其

信息熵为 

H (D) = −
K∑

k=1

|Dk|
|D|

log2
|Dk|
|D|

, (4)

|Dk|
|D|

式中, K 为样本类别总数,    为第 k 类样本的数

目 ,    为数据集 D 的数目 . 使用特征 A 对变量

D 的条件熵为 

H (D|A) =
n∑

i=1

|Di|
|D|

H (Di), (5)

则选择 A 构建子树的信息增益、信息增益比和基

尼系数分别为 

g (D,A) = H (D)−H (D|A) ,

gr (D,A) =
g (D,A)

HA (D)
=

g (D,A)

−
n∑

i=1

|Di|
|D|

log2
|Di|
|D|

,

gini (D) = 1−
K∑

k=1

(
|Dk|
|D|

)2

. (6)

本文建模过程中, 使用交叉网格搜索方法, 对

树的深度最小分割样本数和最小分割叶子节点数

等主要超参数进行调整. 交叉网格搜索方法是指定

超参数取值的一种穷举搜索方法, 用于搜索算法的

最优超参数组合. 通过将需优化算法的超参数运用

交叉验证的方法进行优化, 即将各个超参数可能

的取值进行排列组合, 列出所有可能的组合结果

生成“网格”, 然后将各组合用于算法训练, 并使用

交叉验证的方法对表现进行评估, 将平均得分最高

的超参数组合作为最佳的选择 , 返回给算法 [18].

决策树算法使用交叉网格搜索方法进行调整超

参数时, 将表 1所示的超参数设置在指定范围内,

将参数 cv设置为 4, 其他参数默认, 搜寻最佳超参

数组合. 决策树算法鉴别各种成分最佳超参数如

表 1所示.
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 2.2.2    随机森林模型构建

随机森林算法 (RF)是一种监督机器学习算

法, 广泛用于解决分类和回归问题. 本质上, 其是

由多个决策树集成之后构建的, 使用 Bagging (自

助聚类)方法训练而成, 通过随机有放回的抽样方

式选取数据构建分类器, 最后 通过组合学习得到

的算法提升算法整体效果 [19]. 随机森林结构如图 2

所示.

 
 

训练样本

样本3样本2样本1

预测结果

投票选出结果

Bagging法随机抽样

结果1 结果2 结果3…

…

…

图 2    随机森林算法建模流程图

Fig. 2. Flow chart of random forest algorithm modeling.
 

随机森林算法可以看作是对原有决策树算法

的整合和改进, 能够很好地处理变量间的非线性关

系, 有着分类准确率高、抗噪能力优异、抗过拟合

能力较强以及能够平衡非平衡数据的误差等优点;

此外, 随机森林算法能够在观测变量较少的前提下

完成分类任务, 适合宇宙线粒子这种非平衡数据的

分类 [20]. 本文使用随机森林算法建立宇宙线粒子

成分鉴别模型过程中, 使用交叉网格搜索方法进行

算法超参数调整, 调整结果如表 2所示.

 2.2.3    BP神经网络模型构建

人工神经网络算法 (ANN)是一种常用的非

线性数据建模算法, 通过学习寻找并建立输入数

据和目标数据之间的映射关系, 十分适合解决非线

性和不确定性问题. BP神经网络, 即前馈神经网

络是一种多层前馈的人工神经网络, 其基本原理

是输入信号前向传播, 误差反向传播 [21]. 在前向

传播过程中, 输入信号经过输入层和隐藏层处理

后, 到达输出层后输出. 若输出结果与预期结果不

一致, 则根据预测误差, 使用梯度下降算法 (gradient

descent)调整各层网络的权重和偏置, 使得算法输

出结果无限逼近预期结果, 直至得到损失不再降低

或达到指定循环次数 , 该过程称为反向传播 [22].

BP神经网络结构一般分为 3层, 即输入层、隐藏

层和输出层, 输入层负责接收输入数据并转换为信

号, 输出层负责输出模型结果, 隐藏层负责建立二

者的映射关系. 本文 BP神经网络结构示意图如

图 3所示.

表 1    决策树鉴别不同成分最佳超参数
Table 1.    Optimal hyperparameters of decision tree identifying different components.

超参数
目标成分

质子 氦核 碳氮氧 镁铝硅 铁核

criterion Entropy Entropy Entropy Entropy Entropy

max_depth 21 29 40 28 19

min_samples_split 2 4 7 2 4

min_weight_fraction_leaf 0 0 0 0 0

min_samples_leaf 1 1 1 1 1

表 2    随机森林鉴别不同成分最佳超参数
Table 2.    Optimal hyperparameters of random forest identifying different components.

超参数
目标成分

质子 氦核 碳氮氧 镁铝硅 铁核

criterion Gini Gini Entropy Entropy Entropy

n_estimators 48 88 30 15 21

max_depth 20 26 30 27 23

min_samples_split 2 2 2 1 2

min_samples_leaf 1 1 1 1 1
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Oj隐藏层第 j 个神经元的输出值为  , 计算公式为
 

Oj = φ (nj) = φ

(
N∑
i=1

αijxi + λj

)
. (7)

Ok输出层第 k 个神经元的输出值为  , 计算公式为 

Ok = ψ (nk) = ψ

 M∑
j=1

βjkyi + γk

 , (8)

nj nk

αij λj

βjk γk

ϕ和ψ

其中,    和   分别为隐藏层第 j 个神经元和输出

层第 k 个神经元的输入;   和  分别为输入层第

i 个神经元到隐藏层第 j 个神经元的权重和偏置;

 和   分别为输入层第 j 个神经元到隐藏层第

k 个神经元的权重和偏置; N 和 M 分别代表输入层

和隐藏层的神经元个数;   分别代表隐藏层和

输出层的激活函数.

本文使用 BP神经网络进行建模过程中, 首先

对数据进行预处理以消除极端数据对于模型训练

的影响, 数据预处理原理为 

xscalered =
x− xmin
xmax − xmin

, (9)

xscalered xmax xmin其中  为标准化后的数据,   和  分别为

数据的最大值和最小值.

Nh =
√
Nin +Nout+

a Nh Nin

Nout

Nin

Nout

Nh ∈ [3, 13]

然后, 确定 BP神经网络的拓扑结构. 本文中

神经网络的输入和输出层均设置为一层, 输入层和

输出层神经元个数分别设置为 5个和 2个, 隐藏层

节神经元数由Kolmogorov公式 

 计算得出 [23], 其中   为隐藏层神经元数,    为

输入层神经元数,    为输出层神经元数, a 为取

值范围为 1—10的常数. 实验中选取宇宙线粒子

5个特征敏感值输入网络, 故  为 5; 实验中在输

出层中通过 Softmax函数计算并输入数据标签为

“0”和“1”的概率, 故   为 2. 因此隐藏层节点数

的取值范围是   . 然后, 为了确定最佳隐

藏层节点数, 采用控制变量法, 使用动态调整学习

率算法, 初始学习率设置为 0.01, 每迭代 2000次,

学习率变为原来的 0.7倍, 其余条件不变, 只改变

隐藏层节点个数, 并通过损失函数图像确定迭代次

数, 进行模拟实验. 以鉴别氦核为例, 采用 BP神

经网络算法核验结果如表 3所示.

综合考虑 AUC值和 Q 品质因子, 确定隐藏层

节点数为 13, 因此本文使用的 BP神经网络结构

为 5-13-2的拓扑结构, 对热中子探测器中的氦核

模拟数据进行鉴别. 表 3给出本文根据评价指标确

定 BP神经网络算法鉴别氦核最佳拓扑结构的核

验结果, BP神经网络鉴别其他成分最佳超参数组

合的确定方法同上, 结果如表 4所示.

 

…

输入层

原初能量

天顶角

电子数

芯距

中子数

隐藏层

输出层

目标成分

杂质

图 3    本文 BP神经网络结构示意图

Fig. 3. Structure diagram of BP neural network in this paper. 

表 3    BP神经网络 (鉴别氦核)隐藏层节点核验结果
Table 3.    BP neural network (identifying helium) hidden layer nodes verification results.

训练结果
隐藏节点个数

5 6 7 8 9 10 11 12 13

迭代次数 20000 20000 20000 25000 27000 20000 20000 20000 20000

算法AUC值 0.5503 0.5045 0.5293 0.5593 0.6329 0.6276 0.6177 0.6142 0.6418

Q品质因子 0.82 0.29 0.58 0.86 1.26 1.25 1.22 1.26 1.34

表 4    BP神经网络鉴别不同成分最佳超参数组合
Table 4.    Optimal hyperparameters of BP neural network identifying different components.

超参数
目标成分

质子 氦核 碳氮氧 镁铝硅 铁核

隐藏层节点数 13 11 13 13 11

初始学习率 0.01 0.01 0.01 0.01 0.01

迭代次数 20000 25000 20000 20000 20000
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图 4为 3种宇宙线粒子鉴别模型鉴别氦核的

10折交叉验证检验图, 可以看到 10折交叉验证过

程中 3种模型训练和测试的准确率之差均不超过

0.2, 即 3种模型均不存在严重的过拟合问题.

 3   结果与讨论

本文在训练过程中将目标成分向“0”方向训

练, 其他成分向“1”方向训练, 并输出相应的概率.

为了描述 3种机器学习算法对目标成分 (target)

鉴别的结果, 定义临界值 Tc 来计算目标成分鉴别

的纯度 (purity)和效率 (efficiency), 计算公式如下: 

Purity =
Ntarget (T ⩽ Tc)

Nall (T ⩽ Tc)
,

Efficiency =
Ntarget (T ⩽ Tc)

Ntarget (All)
. (10)

Tc

⩽

⩽
⩽

以鉴别目标成分氦核为例, 3种鉴别模型将粒

子种类判定为氦核的概率如图 5所示, 综合考虑氦

核纯度及效率后本文选择临界值   为 0.5, 即: 1)

在 BP神经网络鉴别模型中, T   0.5时, 氦核鉴别

效率及纯度分别为 36.0%, 52.8%; 2) 在决策树鉴

别模型中, T    0.5时, 氦核鉴别效率及纯度分别

为 83.3%, 80.1%; 3) 在随机森林鉴别模型中, T  

0.5时, 氦核鉴别效率及纯度分别为 79.3%, 95.7%;

由此可以看出, 随机森林算法鉴别氦核纯度较高,

达到 94.5%, 鉴别氦核的效率在 79%左右.

与模型鉴别氦核过程类似, 其他成分鉴别效率

及纯度如表 5所示. 1) 在利用 BP神经网络鉴别

模型和随机森林鉴别模型鉴别各成分时, 重成分

(铁核)鉴别的效率及纯度较高, 其中神经网络算法

效率和纯度分别为 82.8%和 87.5%, 随机森林鉴别

模型鉴别铁核的效率和纯度分别为 91.1%和 93.5%;
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图 4    三种宇宙线鉴别模型鉴别氦十折交叉验证核验图

Fig. 4. Results of three cosmic rays identification models identifying helium using 10-fold cross validation method. 
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图 5    三种宇宙线粒子鉴别模型鉴别氦核概率分布图

Fig. 5. Probability distribution of  three  cosmic  rays   identi-

fication models identifying helium. 
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2) 在利用决策树鉴别模型鉴别成分时, 对于中成

分 (镁铝硅、碳氮氧)鉴别效率及纯度较高, 效率和

纯度均可以达到 90%以上; 3) 利用 3种鉴别模型

鉴别轻成分 (氦核、质子), 决策树与随机森林鉴别

模型鉴别轻成分效率在 74%以上, 纯度在 77%以

上, 而神经网络鉴别模型鉴别轻成分效率, 尤其是

对氦核的鉴别效率与纯度并不高, 对质子鉴别效率

与纯度在 64%以上.

随后, 本文根据各成分鉴别结果得到算法分类

效果检验的评价指标 AUC值与宇宙线研究领域

中的品质因子 Q 值 (如表 6所示), 结果表明: 1) 随

机森林算法在各成分判别中纯度均可达到 90%以

上, Q 品质因子较高, 即对宇宙线各成分鉴别能力

比其他两种算法要好; 2) 决策树算法在中成分 (镁

铝硅、碳氮氧)鉴别正确率可达 90%以上, Q 品质

因子在 6以上; 在轻成分和重成分中的鉴别正确率

达 85%以上, Q 品质因子在 3左右; 3) 神经网络

算法在重成分 (铁核)鉴别中具有一定优势, 判别

正确率达到 87%, Q 品质因子为 2.96.

客观来讲, 天顶角、能量以及簇射芯位在阵列

中的位置等相关参量也都会受到原初宇宙射线的

重建精度的影响, 本文目前在算法建模中采用的参

量还比较理想化, 未将以上参量进行综合考量, 下

一步我们将在此基础上继续优化和修正机器学习

算法模型.

 4   结束语

本文将决策树、随机森林、BP神经网络算法

应用在宇宙线粒子分类问题中, 并针对不同算法进

行超参数优化调整, 以提高算法判别的正确率及鉴

别效率. 实验结果表明, 机器学习算法在宇宙射线

粒子成分鉴别领域有较大的应用前景. 目前本文只

考虑了 BP神经网络、决策树和随机森林算法对于

宇宙线粒子成分分析的高效率, 还未使用其他算法

对宇宙线粒子成分进行分析, 而且训练和模拟所用

参数过于理想化, 因此, 下一步研究工作中将加入

更接近实验中实际探测的观测量, 进一步优化机器

学习算法, 提升粒子鉴别能力, 并将继续深入探索

其他机器学习算法在宇宙线粒子鉴别中的应用.
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Abstract

Machine  learning  algorithms  can  learn  the  rules  and  patterns  of  big  data  through  computers,  excavate

potential information hidden behind the data, and be widely used to solve classification, regression, clustering,

and other problems. Firstly, this paper uses CORSIKA software to simulate the process of cosmic ray cascade

shower  in  the  atmosphere,  generating  information  such  as  the  initial  energy,  zenith  angle,  azimuth  angle  of

cosmic  ray  particles.  Then,  this  paper  uses  the  Geant4  toolkit  to  conduct  thermal  neutron  detector  response

simulation,  generating  4000  particles  in  each  of  proton,  helium,  CNO,  MgAlSi  and  iron.  Based  on  the

experimental  simulation  data  of  thermal  neutron  detector,  this  paper  constructs  machine  learning  models  for

identifying cosmic ray particles by using decision tree (DT), random forest (RF) and BP neural network (BP

NN) respectively. For each particle, all  the machine learning algorithms are used for model training based on

the  simulation  data.  The  cross  grid  search  method  is  used  to  adjust  the  hyper  parameters  of  each  machine

learning algorithm. The AUC value and Q quality factor value of each algorithm are used as evaluation indexes

for  particle  composition  identification.  The  AUC  value  is  a  general  indicator  for  evaluating  algorithm

performance in machine learning and the Q quality factor value is an evaluation index commonly used in the

field of high energy physics. The Experimental results show that different machine learning models have great

influence  on  particle  prediction  accuracy,  and  the  random forest  cosmic  ray  particle  identification  model  has

sufficient accuracy and generalization capability. In the test, the decision tree algorithm adjusted by cross grid

search method is sensitive to the medium components (CNO and MgAlSi). The AUC values of the algorithm

are all above 0.95 and the Q quality factor values are all above 6. The random forest algorithm adjusted by the

cross grid search method has the best effect on the identification of cosmic ray particles. The AUC values of the

algorithm are all more than 0.92 and the Q quality factor values are all more than 4. The BP neural network

algorithm is only sensitive to proton and iron. This study provides a new method and selection for identifying

and screening the cosmic ray particles and it also provides a new idea for the following measurement of cosmic

ray energy spectrum by thermal neutron detector.
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