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Fig. 1. Vertical distribution of stratified fluids and depend-

ent coordinate system: (a) Vertical distribution of density

(a) RIEHES

and buoyancy frequency in shallow water; (b) dependent

coordinate system.
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Table 1.  Conditions of density distribution parameters.
KM/ (kgm™2)  KIREE/ (kgm™2) M52 /m  BKE/m AKFE/m  HEESZE /cph (1 cph = 1/3600 Hz)
1020.8 1025.2 0—>50 50—150 200 0.0138
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Fig. 2. Comparison with classical results: (a) Simulation result; (b) classical result.
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Fig. 3. Multi depth section of source-generated internal waves.
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Fig. 4. Source-generated internal wave at Y = 0, Z = 20.
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Fig. 9. Characteristics extraction and target detection process.
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Abstract

The development of noise reduction and silencing technology has brought great difficulties to underwater
target detection, and more target characteristics need further studying. When a submerged target travels
through density-stratified environment, the fluid will oscillate behind the target owing to gravity and buoyancy
and generate internal waves, which are often referred to as source-generated internal waves. These internal
waves are difficult to eliminate, which can cause the sound speed profiles to fluctuate. Therefore, these internal
waves are expected to be effective for detecting underwater target. In this paper, the fluctuations of the received
sound passing through the internal waves produced by a moving sphere are investigated. A typical shallow
stratified environment is set up, and internal wave fields generated by a sphere moving in many horizontal
directions are simulated. According to the simulation results, these internal wave fields have a much wider
range than the scenario of the target body. Based on the relationship between the amplitude of the internal
wave and the variation of sound speed, range-dependent sound speed profiles are constructed, and model based
on ray acoustics is used to analyze the aberration strength of passing sound fields. Results show that the
strength aberration is inversely proportional to the target passing angle, and these characteristics can be
covered by the background. Focusing on this problem, an extraction method based on principal component
analysis with sliding window is then proposed. The uncorrelation between the disturbance of internal wave and
background signal is utilized, and interference is suppressed by removing the component in No.l principal
component space, and retaining the No.2-No.k subspace. Detection can be executed based on multi period
received data from single hydrophone. A lake experiment is conducted to verify the performance. A detection
scenario of single source and single receiver is established, and the AUV target crosses source-receiver line
multiple times. The research results show that the detection scheme based on the acoustic aberration of source-
generated internal wave has potential for underwater target detection, possessing the advantages of wide
coverage and high robustness. Data on multi depths are processed to show that the detection performance is
dependent on the depth of system. Since the acoustic strength variations are derived form local disturbance in
channel, the proposed method may be affected by severe environment fluctuation, and further research is still

needed.

Keywords: source-generated internal wave, sound field strength aberration, sliding window principal

component analysis, target detection
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