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Fig. 1. U-net neural network architecture.
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Fig. 2. The loss function varies with the training iterations
of the DNN, which is the mean square error between model
predictions and true values as a function of training itera-
tions(epochs), and a lower value indicates better prediction
performance. The yellow line represents the loss function on
the validation set, and the blue line represents the loss

function on the training set.
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Fig. 3. Comparison of images predicted by neural networks and actual captured results (excluding atomic information): (a), (¢) The
optical density and Fourier space distribution of images generated by neural networks; (b), (d) the optical density and Fourier space

distribution of actual double-shot imaging; (e) comparison of noise in frequency space.
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Fig. 4. Comparison of images predicted by neural networks and actual captured results (atomic information included): (a) Stripe-
free atomic density distribution map generated by neural networks; (b) atomic density distribution obtained using traditional

double-shot imaging; (c¢) one-dimensional density distribution in the white square (integrated along z direction).
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Abstract

The ability to detect atoms in high spatiotemporal resolution provides a powerful tool for us to investigate
the quantum properties of ultracold quantum gases. Plenty of useful imaging methods, including absorption
imaging, phase contrast imaging and fluorescence imaging, have been implemented in detecting atoms. Among
them, absorption imaging is the most widely used method in cold atoms laboratory. However, the traditional
absorption imaging method is affected by perturbations such as interference between optical elements,
fluctuation of laser power, frequency, and spatial position, resulting in residual spatially structured noise and
degradation of imaging quality. Especially for regions with lower density or for longer time-of-flight, a large
number of repetitions are often required to obtain better signal-to-noise ratio, which would increase the time
cost and induce other noise. One must reduce the time between two imaging pulses to suppress the spatial
noise. A better charge coupled device (CCD) with higher frame transfer rate or other method like fast-kinetic
mode will be used to improve the imaging quality. In this paper, a single-shot cold atom imaging method based
on machine learning is proposed, in which only one absorption imaging of cold atoms is required, and the
corresponding background image can be generated through the neural network of an autoencoder. This
effectively reduces the spatial striped noise in imaging, significantly improves the imaging quality, and makes it

possible for cold atoms to be imaged multiple times in a single cycle.
Keywords: machine learning, cold atoms imaging, streak noise suppression
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