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HAYF R F9¢ 6 F#E (single molecule surface-induced fluorescence attenuation, smSIFA) £ AR & —Ff
T MR Z A A TR A K o Fikim s s WS ik, BN EARAZ 4P Hssh T /Eh
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GO) Ff BIGVE NN BT Z K SIFA AR Y KA F B L T HEEH, B A SN GO HA EE
BRI R B S R 91 BT R R 0 S PR 5 R A B R, IR R R AR S o A 0 TR, iR R
THRARB AT EER R ASCR R T L GO A BTS2 R B4 F SIFA 2R, FIl H #GE IR Y 77 ¥ % GO #1718
D, 38 S A A SRR B A T IR R B O W) 3 SR Uik A3 B4 (reduced graphene oxide, rGO), W FRE
VER BB, R A2 6HR 0 B DNA I & vGO M FRE# K IE B . K rGO HF H.43 T SIFA £ R, Xf Holliday

junction F R ARAL WAL, ISIE T rGO RYFRMITE .
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PACS: 78.67.Wj, 82.80.Pv, 87.14.gk, 87.15.H—
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AR T OO IR RE i 7 7% R B R S I 3R TR 5
TN I (surface-induced fluorescence attenu-
ation, SIFA) FAJEN 4N i Mo Z Ak, 8
I 3T AT PO AL AR R AR B, AT AT
DECALARTEE FIURA LR 18T A7k ) R B 10121 S S il
ORI AR E A PR ik BRI R i (1) =X
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Fig. 1. SIFA method of adjustable dy: (a) Schematic representation of SIFA method; (b) relationship between degree of attenuation

of a fluorescent donor and donor-surface distance; (c) relationship between detection sensitivity of SIFA and donor-surface distance.

FETH ) A B S . PR A AR oAz M
AEZZ JERIABH SR APk, [R] i iR B2 e 3 b1
BHDGAPERE LA R il S x5y B2 . iAok B T4
7 (graphene oxide, GO) ) SIFA J5 ¥ 7F i8R
FRBFFE A G )2 B (3140 o S 1) B
I3 TR WA T — g R 19181 DIFERTSE R
B, GO W) dy = 4 nm", f188J&M) dy =~ 18 nm!6-18],
GO 1Y dy B/, A B s HAR T 26 nm g
N A 5 s A SRR Y dy ]R3 5 PRI B
HARI 12 nm DIANYIXEL. & 1(a) B THIH GO
A SRR A B2 ARET R BR, LA #55F GO
Y A I3 32 AR I AN B8 4 D7 67 1) 7 i 20 B A 3
TR X3, AAAE TCIEAR I A X Ja]. [ 1(b) R T4
7] dy ABERS TR ICINER, T8 dy BRI 2t 2k il 5
R, PRI A RABUE e, HPOUHMAE B A ik
T 50T B R 11 SR AR 18 2 T . AN ) g —
HERTRHY dy ANTF], BEAEENYE AN, 4T STFA
S0 T AR H AR K37 19 R LR SR
(L AFEF BRI RERAT B dy HORTEL

SIF A J7 A7 2 b (AR P e 290 Jf 5 12 e B 5
(RS A I (AR R s SR, PRI STFA
1R R AZ 1) TR T PO AR AR . 8
TN AESRERS 73 HE DGR AR LR Ly 10% 1Y, 2
T AT AR (1) 3 AR dy 0 R 0 R
R, K 1(c) B/R T SIFA # f%) #E 2 22 05 il
24, GO dy = 4 nm, TE dy BT A4 00 R BRE mT
PIAZAT 0.5 nm, 7F#E 2 HAR M 26 nm YL
RS EE 1 onm (95 B R AR — EU 3 —
6 nm M RBEFIZ 5, GO BRI 73 HE 2RIk =

3 nm, Jf H A FE B 038 I 7 Fee 24880 R Y
do ¥ 1= 2 10 nm B, AR RS PRI BE 25 A o1 R 1H
P O G 3 R 1 2 AR 5, {H B 2 AR R R B
do BTt HOBESCEE 1 nm A B0 KS . 7F 34T
SIFA SCEGHE, QRZSCEL 1 nm (123 [E] 4398, N
MR Z AR dy B KTF 10 nm. @i 1(c) fFiw,
FEXA T Z AR 12 nm VLN AR Ko 3R T
M, DLR AN B0 A1 GO B A9 Jm BR , PR
1 nm P25 [H] 43P F5 2 dy 7 4—10 nm Z [H]
HEAT IS Hil% dy 7E 3—10 nm 4 BUAPET
FHF SIF A S5 R SR A= 1) K o3 T I A ks £ A
il £ 1 RIME. A IFFE SR BA, X S50 04 738 L L
EATT LIS dy, (B4 S50 AL A AR 594 9L,
i JF A AL A7 250 (reduced graphene oxide, 1GO)
S GO JEAT IR A 2= R 2 S R T8 SRS T
BB PR, rGOMl &, H A3 Ak
A S P2 5 R B, GO X o Y
KBHRAF5 GO Fify sdis 2 1] 2524 {H rGO A}
B Z ARG IR . AR SCR G I 7
il 45 rGO, TR FIOLMAA. WP
1C ) BUEE DNA b ROKS 8 U & 1 A [6] 38 ot 7 5
rGO HJ dy, SR TEA R SIFA £0R, it 5 GO
HEATXTEE, BAE T rGO-SIFA FAR I3

2 ERAMRE %

2.1 GO 9ERHIH &

GO SR T E 7752 Hummers J77% 2520,
Bt 1 g NaNOg, 46 mL H,SO, LI 1 g f158, T 0 C
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TREE TR G ), XHE G T vk LR FE R 5
BEER 0 C, HHEEWHZEEMA 6 ¢ KMnO,.
VLR RS 2 b, TR RS RAR 2 35 C
RSB RE 2 h, % 120 mL £ B FKEEMARS
W (30 min), FJE K 6 mL HyO, (250N
30%) M M AR A W, JFH5 3R 20 min 247
M EEE L (15000 r/min) 20 min 45 A9 1R A%
W, Bk LI RS R O PR A HOA T 25
Tk, BEATE A (100 W, 30 min), ¥ £ )2 %1k
A Ss A TRIES. XA TR 250 (1000 r/min)
10 min, ZEBRVIEMR TR LW, EE XL 3 —
49K, EEIASTEH B A DTTE . B AR B T TR
HE—2E B0, RRRGEL O BOE LB WS R ITTE PR
AT T —REL. 235 8000, 6000, 4000 r/min
250 25 min, 4000 r/min B0 )5 W TLTE 5 F
LA 2000 r/min &0 25 min, Frfs 2] A9 A
ShSEE I GO AR

2.2 XPS FiESH GO KRR

HIHRR LT 4e 2 B (B A2 47 mm, fL42 0.2 mm,
Whatman) X}l £ ) GO ZrHURGHA T B 25 g 27
ST R 9 AR T 22 i AIE AR B 432 T k. BY
Wi GO R, M 2 A T i s 35 GO
WS AE b a], il T B A RS TR
Wh 8 C/ min, FHl % HARREE S 4E%F 2 h, TS
FARR AR Z IR, R s 551 rGO wWifli s GO
TR b [ B B B AT BT Y X Ot hE
WAL (XPS, Thermo Fisher Scientific ESCALAB
250X) bl EZ55RE, Ar A X-S e B f iy
K, 514, REREN 1486.6 eV.

2.3 rGO-SIFA SCIGH1E

rGO-SIFA S50 60 rGO-SIFA R i i % i
FNL I S S o e 0 v S S = i | D WSS iy U
M =45

2.3.1 rGO-SIFA # Sf= F 09 4] &3 42

S i T B4 3 R B PR R T A D%
Jit, LA 50 T 0Ot R S B . BT
Ve i R S ST 00 P PR IR X 5 3 R R A VR 30 min,
IRJE LB TP i PEUE XN ERSR BA , FEH Y
FE G UE 30 min, JFLEME PG BESS RE 258 T
KB P UE L M BEAL B . 1 mol /L By NaOH

VRO S 3R AT RS T VR, B UCTE R 10 min 5
B NaOH UK, A IETE 3 WK, 13T HiX
AP w3

F| I LB(Langmuir-Blodgett) % A ¥ GO 43
BRI RR GO R B v T s B A b 29
Won—de i b, eE TEEER
FrNEERE FHRE R R 8 °C/min, FHEZ HiRE
FEJSHERE 2 h, W5 HARR A 2 500, OB B
rGO 5 3¢ 7 FIE Ve T i 48038 1 B G 7 — i, i
TG 5 B ARTE A N SO O U BE B AR il
232 E5TRAEZRAMHEH S

SZ5 T DNA PRI T 1A TAY T
() B A1 R |, BUEE DNA B 51 4
TATGGTCAACTGCTGAGCGTAG-biotin,
ATACCAGTTGACGACTCGCAT. DNA Holi-
day junction 1 4 Z55EFHI IR 2 s, IR K GEnp
¥ (pH = 7.5) B53°4 50 mmol /L NaCl, 25 mmol /L
Tris-HCL XU DNA JB KIPHf 2 25 4% DNA #2118
1:1IRA, IB KM (pH = 7.5) i34 50 mmol /L
NaCl, 25 mmol/L Tris-HCl, M#ZE 95 CHH
5 min, MMiJ57E 7 h NZEERHEZER.

W2 WEE DNA FF 5 I 22 o W 3
50 mmol/L NaCl, 25 mmol/L Tris-HCl, pH=7.5.
WEE DNA Holiday junction £ & B 14 2% & 53
750 mmol /L. NaCl,50 mmol/LMgCly,25 mmol/L
Tris-HCl, pH=7.5. TES1 T HI3 0L BT 5% o
WNTFEMATTEEKAE R, o34 0.8% D-Hi%HE
1 mg/mL FZBH4AALEE . 0.4 mg/mL i 41k S |
1 mmol/L Trolox.

2.3.3  rGO-SIFA % XM &4 5 %

B, ¥ 1 mg/mL AW R B0 4 1 5 A
(biotin-BSA) ARG IEE, I H 5 min J5 H PBS
2 WP SR S Y biotin-BSA; MMA 10 pg/mL
BERESEFNZR (strepavidin, SA) HEIFE 5 min i H
PBS ZZnmpinehiiiz2iny SA. 485, ¥4 100 pmol /L
K¥mhric T biotin AYZEEHRIC DNA A & &
2, W H 5 min J5 F PBS 2% vp Vi 1 1k 4507 5 1
DNA. fitJa, ¥ B FPT I K AR RIEA AR
HE I T B F oG . SR R FH LN
B9t BB EMCCD Sy JEAi 5 XGH 1 74t 3
PR BE L R LN 265 - (29-31 ) EMCCD B I 8] %
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4 50 ms. F|FH ImageJ il Matlab &5 804410 5% M
AT GRE.

3 R 536
3.1 XPS 5#7 GO HI#IER

FIH LB HAR ] DUAESE | AR A o7 55 5% - |
BEMF)ZE GO, LA RE i 2 34T 501 SIFA
Sy M. SEUG i FH ) 55 3% 7 e BEREE 600 °C 5
i NARKRAERR SIEAE, FETF I, BB T2 GO
) a3 A FLEE T B S N ks, AT
RENEM T rGO a3 A, JFiEAT SIFA SC55.

ANFEE SRR FE B v GO TEP B | Ab~4 Fole s 55
PEJR Al BEAFEAE X 51 B2, @it XPS J5 kil GO
5 rGO MR ML I FEE G IR, AT LA &
P JE GO MR RGPl B2 GO K
R ZAEHORGN M, /NT XPS MIRIIVE I, 1
FEXTEEHE A B v GO HEA T A 3 B s 0 1 T B
AR A AT, I GO ol
B GO I, F 2 3588 7 GO I AE ],
&M T GO M BE A R BLE | I X #A0A 5 1
rGO HEHTT XPS 4347,

mE 2(a) fiw, GO 1) CLS iEE R H T 34
W, 43X C—C (sp? Z24bbk) . C—O (R ILFIIA
AAkY) . C=0(FkIL) 27, 2853 300 °C F1 400 °C 4t

%% 2 h PEATIRJE ) 1GO H C—0 5 C=0 g
AL (K 2(b), (c)), RIIKF& AR T L
Fr. XPS 2k 25 Rt R 2 4 5 GO 153
TARLF R IR S, W 2 A5 — B TR, A8 T Y
GO, 300 °C & FHEE 2 h I8 )7 rGO (300 °C-
2h-rGO), LA K 400 °C iR EETHEE 2 h 851 rGO
(400°C-2 h-rGO), C/O HAH 4> Bl J& 1.14, 2.48 I
3.29. X —ZE SRR LA IFSE— 3, PR 1GO 11
I DR B M T 30 D kB AR Ji i ] B3], 3
JEr Rk P8 RIS S ] £ 5 SR i 2, 3 e B AN ]
WIFZHOT LN rGO MR JFRE B R T S 4.

3.2 FEHE rGO B EEFERIESE d, HNE

FERN L rGO 1E A B3z R 1) SIFA HARWF
FEHE IR 436 20 R T 1435 1) 328 B 22 i 1fl
I 2 AN — 2 WAIF rGO B REB ] TRk
S TFHIBFIE; —2IE rGO 1Y dy. X DNA 1R
W SRR E , PEERRICH DNA RAUATLIVE A
BAGY T 6 UG AR AR A it ok 56 UF vk i T
17hE, BT TS DNA A EAEHE A .
WRINARIC T Cy3 1 biotin X DNA j#iid bio-
tin-BSA DA} SA E#H:AE 1GO i, WKl 3(a) r
AN EATE Cy3 BGRB8 3 4 I AR 19 iR
AT, RIATRIA (1) 20 H 1GO 19 d,,. B 3(b)
ZEFNIETE DNA A RER B R 1 L 2 mip AR i i =

—
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B 2 #iH GO LUK rGO MK XPS i (a) WIHH GO Ml C 1s 19 XPS % (42) LA K& XPS 4 (£7); (b) 300 °C-2 h-rGO # i C
1s [ XPS 3% (72) LI K XPS 458 (47); (c) 400 °C-2 h-rGO M C 1s 1 XPS 1 (4) LA Jz XPS 421

Fig. 2. XPS spectra of original GO and rGO thin films: (a) C 1s XPS spectra (left) and XPS survey spectra (right) for original GO
thin films; (b) C 1s XPS spectra (left) and XPS survey spectra (right) for 300 °C-2 h-rGO thin films; (¢) C 1s XPS spectra (left)

and XPS survey spectra (right) for the 400 °C-2 h-rGO thin films.
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(a) 2 ()
. £ 5000
Bright =
Dark g p 4000 | . 60
% 3000 | E 40
2000 S 20
~ on-rGO on-glass é‘ 1000 Fqst cy3: — Class
M ) . . ot 0 L ’ L 0 ;
z 0 10 20 30 40 2000 4000 6000
Time/s Intensity /arb. units
2}
2
(b) 2 5000 300 °C-2 h-rGO
2 1000 60 I=(0.66 % 0.08),
g »
3
300 1C-2 h Add DNA 8 3000 5 40
rGO p——y = 2000 8 20
@ 1000 F1st ¢y3: — Glass —rGO
—_— b3} 0 L L L 0
10 pm E 0 10 20 30 40 2000 4000 6000
Time/s Intensity/arb. units
12}
£ 400 °C-2 h-
Z 5000 00 °C rGO
2 1000 60 I=(0.45 % 0.09)],
el »
400 °C-2 h Add DNA & 3000 = 40
GO 2 = 2000 8
% 1000 . © 20
a 15t cy3: — Glass —rGO
5 0 A | . 0 . .
E 0 10 20 30 40 2000 4000 6000
Time/s Intensity /arb. units
£ (d) 2 (e)
g 5000 g 5000
& 4000 . 80 4000 F . 60
= 3000 5 40 = 3000 ‘é 40
> 2000 5 2000 3
b O 20 R~ O 20
a 1000 gth cy3: — Glass 2 1000 Foqst cy3:— Glass
3 0 f | 0 . A g 0 h ) 0 . .
;5 0 10 20 30 40 2000 4000 6000 E 0 10 20 30 40 2000 4000 6000
Time/s Intensity/arb. units Time/s Intensity /arb. units
2 300°C-2 h-rGO £ 300 °C-2 h-rGO
g 5000 80 I=(0.79 £ 0.07) I g 5000 80 I~ I
5 4000 ” = (0. 07 5 4000 " 0
5 3000 E 60 5 3000 E 60
= 2000 8 40 = 2000 S 40
Z 1000 Foth oy3: Class —rGO 20 g 1000 Fost ¢y3:  Glass —rGO| 20
3 0 f . . 0 . ) g 0 h . L 0 ) .
E 0 10 20 30 40 2000 4000 6000 E 0 10 20 30 40 2000 4000 6000
Time/s Intensity/arb. units Time/s Intensity/arb. units
wn 12}
b= 400 °C-2 h-rGO = 400 °C-2 h-rGO
§5000 I=0.60 £+ 0.101 §5OOO 80 I=(0.80 £ 0.09)I
_0-4000- m60 - R0 @'4000 ” = (0. .09)Io
% 5000 g = 40 = 3000 L
> 2000 ) = 2000 5 40
£ ) 0 20 21 ) O 99
a 000 rgth cy3: — Glass —rGO a 000 Foqst cy3: — Glass —rGO|
g 0 f . . . . 5 0 h ) . . .
E 0 10 20 30 40 2000 4000 6000 E 0 10 20 30 40 2000 4000 6000
Time/s Intensity /arb. units Time/s Intensity /arb. units
B 3  #Otkric DNA M rCO W dy (a) DNA AR S2 8RB 8 (b) 7E 300 C-2 h-rGO (1) BL K 400 °C-2 h-rGO (F) Kt N

W% DNA; Cy3 #RiC7E 1 bp (c), 9 bp (d) F121 bp (e) &b DNA 7EBE 8 L K vGO b B R A 1) 205 F iR

Fig. 3. Determination of dy of rGO by fluorescence labeled DNA: (a) Schematic representation of DNA imaging; (b) DNA imaging
on 300 “C-2 h-rGO (upper) and 400 “C-2 h-rGO (lower); intensities of Cy3 labeled at 1 bp (c), 9 bp (d) and 21 bp (e) of DNA on

glass and rGO.

TR, 4792 DNA #H: J5 R . £

ZSuR

IJJE}:E(J rGO B B &2, it FR E TGk X
SN EAL T rGO XA 2 B 38 X 3, R LT
Ay RNGEH T A BN Cy3 4r TIOR8 3(c)—

(e) IEAT

TR T Cy3 bnic 76 W4k DNA %

1 bp. %8 9 bp. & 21 bp (S HA Cy3 2 FHIE
S 2R, DANOETR AT, g5 R Cy3 Frid
TEXE DNA _ERFREIRERE, I H A t0mE fis

WL RTEE. Cy3 BGHRE = oA, WE(EEDA L.

3(c) &5 2 F5 A

% 34T HEAE 300 °C-2 h-rGO

F1400 C-2 h-rGO HEAHIENXT Cy3 Fric eSS 1 bp
) DNA #E17 UG TS 2] A B A Cy3 1958
<k DL 5 A . AE vGO A5 i I EE 31 Cy3
BA 2 MR0E DGR, 5 oG5S b iR
S EE AR ], UGN DNA #EH7E T 3088 | 8
PR DNA EHAE T 1GO |, rGO X} Cy3
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AEHAVEM, I3 Cy3 JEsR K. Cy3 JtimiL
fRry ot e . Ak s, £U Cy3 BEE 1GO
1) 1o BE PRSP TE A

300 °C-2h-rGO #1400 C-2h-rGO FAEHEHN Cy3
IO CIRAEAE 22 5%, 41 il & 0.661, Fl1 0.451), FRHH
400 °C-2 h-rGO MO EHIE 300 C-2 h-rGO
T 7 rGO FESERT Cy3 ARCAEss 9 bp 19 DNA
HEFT AT I3 BT 84S Cy3 73 T fotis, WiEl 3(d)
iR, 24 Cy3 #Ric 7255 9 bp B G Ho AR ic 76 26
1 bp B E5E, X JEH T Cy3 BiE GO Fa Ay e
FLARICTE 1 bp BFEHE. 78 300 C-2 h-rGO #& i
X Cy3 ARICAESS 21 bp 9 DNA HEATHUR, ot
HAS Cy3 71 HA —A 6, H R o s N
IS G5 BT, B LT rGO X Cy3 763
WA EAANRET. Giras R LW Cy3 LR
A AU, R TR s AR 1Y 1) 7 A 2258
Cy3 #riC7E5S 21 bp i) DNA 7E 400 °C-2 h-rGO
FE b B AR TH BE 08 7R th 2 N6 o A, R
400°C-2 h-rGO EA 3R IO HTRICR.

XEE DNA 73 W 89 53 B S B2 8 50 nm P,
AHAR B L X AR A B 0.34 nmB7, PR 5256 BT FH Y
21 bp A5 DNA I LERIBEEZ K 7.1 nm 1YFF
AR, 72 Cy3 5 rGO FE 1 A i FE I Hf 2
# B WEE DNA 5 vGO 1m0k 1] (1) 3 /1. A 5
& BH 75 Wb 1 A AE 2% 9 R OBUEE DNA RN 3% T
2w I AR E B, I B 20 60° B89, i
%54 LITEWT ST 2 B BSA A9 R SF K202 3 nml9,

SA I RS KZ) 2 4.2 nmY, Cy3 FRiCTES 1 bp.

559 bplh IR 21 bp BT vGO 2T 135 i 1 25
AT k. 36 1 B4 T REZEOEHRCH DNA
FEBEIE DL I vGO b AT U, AR SHE (A
BITE B dy. EMFEAY rCO B 5 i X AR TR 5%
JEARICHY DNA #ET USRI do, FrR B4R
FER, EARIESE T rGO-SIFA J5 i al 470, 1A
A 36 J 25 14 19 rGO b 3 AS [R] %€ 5% bk 12 47 B 1K)
DNA #47 BGIF 5 dy J& TS S5, nlg sy
S 25 SR A O AS B A R 45 R, E i

RO R ATLIAEE 300 C-2 h-rGO Y dy = (6.3 +
0.5) nm, 400 “C-2 h-rGO #J dy = (7.9 + 0.5) nm.
P13 319 300°C-2 h-rGO 1Y dy UL K Cy3 4
ICTE 2R 21 bpAf 1 & BEAC A (1) 2XAT DL 5a
Cy3 MBS IEsR, KR 0.91). H TN TFIHESR
DA R A A7 AE IR 25, Cy3 WY 52 i o A
HA—Eny s, BMECRI G HA 0.9, F1 1 1§
AN TCIR DX 43, RSNt 9 45 2 — 2. 300 “C-
2 h-rGO H1 400 °C-2 h-rGO ) dy f7AE2 5, /LA
PUTH B 45 52 5 B AR IR B dy BB 6.3 nm
W] 4 nm 2. ASCRAER R R R 400 C,
P B SEIG T 35 3% B89 600 °C TR iR RIS A T
RS ). g — 5 T AT DK 3300 o 3 S 4 Ay Ay o
TR, DI S BT e TR A IR R, DA — 4

= dp.

3.3 rGO-SIFA il £ DNA Holliday jun-
ction 45T

WA dy W32 169 T80 SIFA H0R
FIF R 6% PR 01 B 25 4 L 8 3 T AN ) o B8 P A 0 K 4
T J1Eat . FIHZOEhRC i AUE DNA Skl
rGO K d, if7E GO L iE# ) DNA JA5 —46
w, RYEFRAEYIR I HA AR S T B4
Bk rGO-SIFA J5 i B AT AT, W e — ok
PRic s B rGO i FE R A AE Y KT K
HEATHEGE, XAEW RO TR S5 MR
It HA A5 LB 7543, Holliday junction J& DNA
S AL TR 4 ) B e A, 4 2% DNA
Bl 2H B VO BE 25 40 12 FES TR 2 I B R
FAAAERT, Holliday junction 538 H &1k i)+ 5
5K, HIRWP A 2 th )8 B T AETERT, Holliday
junction B HEE AL X HIZEH 431 Holliday junction
B W X RIS AEAE 2 FPARTRI R 4, I HaxX
2 P QAR W B ARG, 4R 32 3 2 i &
J& BT ) R 15 149]) Holliday junction FFI4:
ARG SE A R 2H R A B AR, b XA A
TR T8 23 5200 2 FhAh) G2 0 e 4k 48 DL KA e 55

# 1  FOEHRC DNA JiHE rGO 1 d,
Table 1.  Determination of d, of rGO by fluorescence labeled DNA.

B 1 bp (7.5 nm)

9 bp (8.9 nm) 21 bp (10.9 nm)

1= (0.66 + 0.08)],
dy = (6.4 + 0.7) nm
I=(0.45 + 0.09),
dy = (7.9 + 0.7) nm

300 C-2h-rGO

400 C-2h-rGO

I=(0.79 + 0.07)],
dy = (6.2 + 0.6) nm
I=(0.60 + 0.10),
dy = (8.14 0.8) nm

I~ I,

1= (0.80 + 0.09),
dy = (7.8 + 0.9) nm
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25 B[] 49461 i F Holliday junction F%) 4% F4) faj 5
oy Tl g, BAER R hREMS FR e WA H) 2 PPy 4Ly
H AR, 28EhRICH Holliday junction & T 5
P F IO CURTAR B RAIE 748 A an (&l 3 fr
7N Holliday junction, £ 2 J&7~ T #4 i Holliday
junction ¥ 4 255845 DNA R HIRTFS), LI Cy3
RIFRICALE, %75 Holliday junction R # 3% #
Y R, IR 2 W &8 B FAEERT e RS
(R G G 4 (16481,

%% 2 DNA Holliday junction A% 751
Table 2.

RN Bt mr 3l
CCC AGT TGA GAG CTT GAT AGG G
CCC TAT CAA GCC GCT GTT ACG G

CCC ACC GCT CTT CTC AAC TGG G

biotin-CCG TAA CAG CGA GAG CGG TGG
G(Cy3)

Nucleotide sequence of DNA Holliday junction.

= =™ W X

Cy3 bricfE H #5019 37K, Holliday junction
M3 HBE 52K I bR 10 19 biotin [ E 78 K 1. 7E
50 mmol /L Mg?*, 50 mmol/L Na*Z&{}' Holliday
junction AR ARG A5, AbT state 1 B Cy3

PR rGO/GO B HE R IE & (29 7.5 nm), &b
T state 2 A HHEE I 29 2 i R 2 A,
Kl 4(a) & BEESAE 5 S X Holliday junction
PP 25 5, 2B J/R T HAS Cy3 43 Y6
i, JER AR E AR R AARMIE S, Gt Es AR Cy3
)G R i oA, TPOE R R 1. K 4(b) A
GO FE i N X Holliday junction #E47 W%, AR
MF] Cy3 iy & ARk, Cy3 fH B R i il 1
B2k 7.5 nm, GO Y dy = 4 nm, it (1) =
A A5 Cy3 BE B GO %83 I i B8 6 38
0.941. B 7.5 nm B T GO Ay R AL
IC IS B B 5 3RO BB M 0.941, BHTEET 1), X
o YN P R AR LY (R V& R A NP s g
XF GO I Cy3 Wyt AT 4eit, 4550 K m o,
H4 2 SRR I B R, X — MR A 2 4
— ISR GO I Cy3FH 2146, JFH
X 2 OGS KN ) AR, SE40 FARXE X 43
HX 2 N6 T GO ARG 4 H RIS T,
£ GO T B3 AT UG A5 2 15 1 LU 22 1
PORS b 2%, PRIOGHR A A A 05 v 2 LU B 0 12K
& 4(c) &7E 400 C-2 h-rGO K& HE 4] Holliday

(a) ‘? 5000 State 1 State 2
=i
= 4000 f 6or I Bright o
n
= 3000 F £ 40l |_T
=
= 2000 - 2 _ ke
b= O 99t ﬁ
2 1000 |
Q
= 0 N N 0 L Brlght
= 0 10 20 30 2000 4000 6000
Time/s Intensity /arb. units
(b) é 5000
2 4000 § 601 I~ 1, Bright ®
o)
5 3000 g 40 | I—T
= 2000 S é _I
£ 20 |
£ 1000 ,
Q
k= 0 . - 0 . . Brlght
— 0 10 20 30 2000 4000 6000
Time/s Intensity/arb. units
(c) ~§ 5000
=1 60 |
. 4000 i = (0.42+0.08)I, Bright ®
= 3000 = a0t I_T
& E = (0.83+0.08)I,
> 2000 8 20 k1s —
£ 1000 A H
Q
E 0 - - . . Dark 2
— 0 10 20 30 2000 4000 6000
Time/s Intensity/arb. units

& 4 SIFA M%< Holliday junction B9 £ A5 #, EHEHS (a), GO

(b) A1 400 C-2 h-rGO (c) LM% Cy3 ##iL ¥ Holliday junction,

ZeF R BAS Cy3 BRI ] e, i iE] S Cy3 B geit 18, #3114 Holliday junction #4584 53 Cy3 Stk i 7R & K
Fig. 4. Observing conformational transformation of Holliday junction by SIFA, observing the Cy3 labeled Holliday junction on glass

(a), GO (b) and 400 “C-2 h-rGO (c), left columns show intensity-time curves of a single Cy3, middle columns show distribution of

intensities of Cy3, right columns show schematic representation of the change of Cy3 light intensity caused by the conformational

transformation of Holiday junction.
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junction #EA7T WAL, Cy3 HYGE A Wire = FIE 2 1~
HZ A kA8, 78 400 °C-2 h-rGO F W% Cy3 Frid
R DNA I Cy3 psREE  ANEah, W] 400 C-
2 h-rGO HX} Cy3 Htsi A Wi Ve, (HIF AR
Cy3 Stimpyfase . Hit, M%L3| Holliday junction
Frdric i Cy3 dtim & A AR fb & i F Cy3 BE 5
400°C-2h-rGO 1= &A= T 481k, XF Cy3 ByJ6iR
HEAT I AL NAL GE 1), S5 R E W Cy3 1Yotk 2 0
2 N oA, WEAE 43 )02 0.421 F1 0.831,. I H]
(1) 2, 18A 400 C-2h-rGO 1Y dy = (7.940.5) nm A]
DI Cy3 5 rGO FRifiiiAEE A 51E 7.3 nm
PI M 11.7nm, 5 Cy3 W HEHE & 7.5 nm UL &
11.1 nm HAHZE . R4 E 4(c) 1 Cy3 BYG5R 5
A AT LA e e MO EsR A e g Ltk 102,
%% W] Holliday junction [ state 1 #4425 2E i []
J& state 2 19 2 %, AL R FHAHTR] DNA ¥4 59
Holliday junction 5545 F—2 40, FLF DL W,
ST H 400 C-2 h-rGO MiZ2 T Holliday junction
(A AR, IF HiX — M A8 ok GO Mg
B, 3 X — 45 R 2= 5 W IR RUZ 400 C-2 hrGO
HA GO ERM dy, AEHE LI . 68
JE A v GO AT DASE i 45 il 1 i il B SR R dp, e
A7 BARGIEFE S R AR B AR K510 R RN bR
TON7 R RIG TR R, DRSS ST .

4 % @

ARICGHE— R T IR 5T SIFA £,
FHEM T GO Maedl i & T s i ebes, @
Ao o T BE AR BUAS [R) 3 SR AR BE 1 v GO, DT 18 45
FRIEVKEE RS, 159200 2 T REA Z 4k &
(SIS ARSCRAZOEIRCH DNA T
300 C-2 h-rGO ) dy = (6.3+£0.5) nm, 400 °C-2 h-
rGOM dy = (7.940.5) nm. A FiIT &5 R ZESE
TRAT 400 C Z [ IR ERENS B dy M 4 nm
F] 7.9 nm BEELLRT. ARSCIHIFE 400 C-2 h-rGO
1 GO X} Cy3 #ric i) Holliday junction #4730
£, GO ANEERIF] Cy3 i & A28 4k, 17 400 °C-
2 h-rGO AT RIAEF] Cy3 Mtor AN Wb e Sk
[ BkA, FEE R T Cy3 fl rGO £ Y
PR, T E A MBS R, FHET vGO
(K] STFA AT T STFA [13E TS, o oA 5
o PR A B D) R S Rl A R Ak, BT rGO A

BARKRDON, AT FIOC UG IT I AN S5m0
EZR {5 M L, B SIFA 4% R F1 FRET $ R B¢
AL R T LS B MRS A= ) K 7 1 = 4k 3 54
GG B WIREARAE R (I DI RE R E5 #4 A5
W, 1GO-SIFA HARRERF B H 12 14 b H.
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Abstract

Single-molecular surface-induced fluorescence attenuation (smSIFA) is a precise method of studying the
vertical movement of biological macromolecules based on two-dimensional material receptors. This method is
not affected by two-dimensional planar motion of membrane or proteins. However, the detection range and
accuracy of vertical movement are determined by the properties of two-dimensional materials as receptors. In
recent years, surface induced fluorescence attenuation based on graphene oxide and graphene has played an
important role in studying biomacromolecules. However, the detection range of graphene and graphene oxide
are limited owing to the fixed and limited characteristic quenching distance. Adjusting the detection range
requires replacing the medium material, which poses difficulties in selecting and preparing materials. Therefore,
it is urgently needed to develop controllable materials for single-molecular SIFA. In this study, the single-
molecule SIFA with graphene oxide as the medium acceptor is improved by reducing graphene oxide through
thermal reduction. By controlling the reduction temperature, reduced graphene oxides to different reduction
degrees are prepared and the characteristic quenching distances are adjusted. The characteristic quenching
distance is measured by fluorescent labeled DNA. Single-molecule SIFA based on reduced graphene oxide is
used to observe the conformational changes of Holliday junction, and the detection range of reduced graphene

oxide is demonstrated.

Keywords: reduced graphene oxide, surface-induced fluorescence attenuation, characteristic quenching

distance, fluorescence resonance energy transfer
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