#) 32 2 3R Acta Phys. Sin. Vol. 72, No. 14 (2023)

148101

EF R HBEREEROTER SERHE"

HRAVD HERDY

N

1) (ZBOREF R T

g
&
1=3
g

mAAV EEHRVD BV

g, I8 230601)

2) (BRBRZ:, [FRME SR GEEMEZRAETRE, 51 230601)

(2023 4E 3 H 26 HUk#; 2023 4£ 5 A 4 HikZIENH)

ASCAR T — A 4-bit XU A G i 8 2 T, 38 2ok T 52 2 i A 90 A A 7 4547 R S B U 5K T e i PR
14 A B R H A0 2 T AT S AR Ul <H R B R N AL A TR ARRE AN R AR O TR 4R
AOME &, BT IR TG 1 — 4> 2 B R SR T . ] 1) 2 B 3 T, 7 I S M AL A A B TR BT A AR R 4
FIMT I A TG I A, AR ARy 24.0 GHz, SEBMNAZ R R, SUe B0t 507 B RV &, IWIMHIESS T i
H Y A-bit XU A 2 A% i 2 1B A A BOSURE X R 90 AR BE . 3o o 8 o A i e A i 2 3 B

HIISE, R0 )2 A PR AR e B ) TE 2 5 R e .

KB XURAL, TABEEOR, iR
PACS: 81.05.Xj, 07.05.Tp, 03.65.Vf, 74.25.Uv

1 5 =

FAghEAE N HLRER ) —Fh FARVET, T 1992 4F
BB, HALRS HEffi sl (spin angular momen-
tum, SAM) FHFLEMSIE (orbital angular momen-
tum, OAM). 5 SAM M, 2k OAM HA i
FHADE exp(il6) , Hor 2L far, OS2 07 00 ff. b
CRCCINYY AR S € (N (N i R S E R VAl
PRI, A 1 S 30 e AL A8 3 R {7 2 i 1291, AN T
OAM R BE A O 0 HH TRLF #0455 B AL Ot
LI O T B F U 9. Thide% P
T 2007 4R H 109 JiE i o AT L H A 4R P R 2
PR ROT TR OAM N FHAE SRS K], 7
2011 4F, Tamburini 45 B 78 52 56 5 A= R0 )
TIRBERCR, BRIA T IRBERR T T ICLGE (R B T AT
PRI R M. 2012 4F, Tamburini 28 10 458 H 7 —

DOI: 10.7498/aps.72.20230457

T OAM MTCEGE R R4, WiHIE N 442 m,
IS OAM ITHENE A — 25 N FH T 2 K 4.
TFEAE A, B OAM IR HE A A= 2E
TR 25 A R E AR AR 1B S S I T 4R 4 T
2 10 4> BTSN 12 DA KL KR RE 5] 23] 25 ok
7 3 6 H gt LA 45 4 5 2 O LA 46 il Ab 46
G, ARKRFREE BRI TR RN . R T kL
GEAs A OAM W e R sl A, BFRE A G
CVBCPE T B AR L. R T REAE I RUEE N R T
PRI AR R, S OAM IR HEDE A A9 A= A% L 14
¥ RGN A B PR T BBy . Bl
G BE AR K, WATE B ok 52 A,
FIFHHEH OAM IR TER R A TCLRYE R A, o
e OAM KA RS, R T Wik ikn = m
BRI R T 1E R —# 4 B S BAR R TIRE, W) RE A
22 I RE 4 % 18 28 T L £ OF UEAT T R IE. — BT
&, 0T OAM X 1) 2 B & A JLF R WE R,
w2 it M4 g 090 A Ak 116 45 17182018 4%,

* EEARBRERES (EHES: 61901002, 61971001, U20A20164, 61801299). LRI HIRBIFAHLS (S 1908085QF258) %
AR BRI BIHIT (S GXXT-2020-050, GXXT-2020-051, GXXT-2021-027, GXXT-2020-037) ¥ B,

t BIE1EE. E-mail: zxhuang@ahu.edu.cn
©2023 HEHEFS Chinese Physical Society

http://wulixb.iphy.ac.cn

148101-1


mailto:zxhuang@ahu.edu.cn
mailto:zxhuang@ahu.edu.cn

#) 32 % 3R Acta Phys. Sin. Vol. 72, No. 14 (2023) 148101

Meng 55 14 $2 1 T 77 A LR R 18 X8 B I 43
51, LIARERFEAN R 21T P RS [ OAM 1
FhELAT . [FAE, Meng $ H T — B 4% ) S M
i, AR T LA A AR OAM B
LR KL, 2016 4F, Yu 25 16 7 1 T —Fh i 58
FEFIA, T DL A U AL SR A O AML IR e
TSR, AN 4 Hh T 22 (] () 25 SUZ BT
T ARG LR R MERE . R AT LU= A IR e
P Y (€ B B U e oy N SR T R I W N I E
MES I AR, HAHR R ARSI OAM
A AR

ASCET I T —F h IE SR A 4-bit
UM Ak 4 % 6 2% T, AT 2B B Eh I B 2 /& B OAM
ATEDE R . XSS B RCR | R R R

JZEA i HLMN < i i 1 2 TR A 2 SR B, A A 2

LR RTT HHA E 2. FFEHR I, 4-bit X
AP S B 3 T T L S I = 200 19 OAM 2 1y
FERIFOVRT, DA AT LA S BB o 24 1 B A5
ek, FHEEZT, AR He e 20 it e = i L RE SIS BRAR )
S OAM ZEFEhI AN, BRA T g FfE BAL
o O AR RS IR IR, BBt A 4-bit 2 A4
T EL AT B 4 FRL R A T 1 R R SR Y 9
RS, T RASEBLRE RO O AM 25 A4 il A1
T, IR R R PES T F7. i B oA
R AT B T7 ik v LAY RS ey R, (9 =&
KA R 25 A AT WL AR X I, o m] LR T 15
VIpAPEESITR

2 Hp oA

BT B AR A7 2 T A4 i, 1R 1 () D0
L7 AL, 2 P E Y iR R E 4w
BR2H B, T IR] A 52 09 A H RO T 3R 40 R
£y Fluy. [RIEHE2S 2 i TE 7 1) U 5 [l £ L.
WA AR A, B, MERTIAERCSF AN Y, X
NS (1) KPR

A1+ By = Az + Bo,
{5/1(141 — By) =Y5(As — Bs) + Y{(A2 + By),

b vy, Yy A0 A R A B AR
MY = /Yo NN TRIZM T, Yo=1/eo/po =
1/377 SR H I ZS [ 44 Y EL G A 25 1]
ASEE, B Yy = Y, X8 3 T Y B 4 AR A7 B
(2) Fkit:

(1)

(1 -6 = Y5/Yo)—(1 + /B2 — ¥i/Yp)e*™

(14 E2 +Y/Yo)—(1 - e2 + Y;/Yo)e"’““d@’)
Hrp ) kAN BZMBER, d i B2 R
Sk T 2 it 2 2 TR A R s SRR A T 2 i
Br, X R R R T I . [ 1(b) R
X IO A BT A TR AL, ph 0028 20 %t Ry
RHESEZE . TEANRZ . &EHRZ. Y o ier
P I8 2 T I T LA S B B SR T, F AR B
HIS, A CH P48 B 2 [E R AE s 4
CH L, HILFTRAZ SO TR LC HUE, KRy
B HSTTHR N Z,. WS EI 5180 y T,
R Z,.. PRI R]5E i s “H R 4524, s
BUR R AR Z,. (EAS—3R A2, h T4
& ST A, 3 s B e T A i AR 2 L
i SH it R, R S L D I PR R S AR AN R
4 B AFE T Z I IS DL, IATRCRIEER 100%.

arg {

(a) v Alﬂ BT B1I
€11
e
Y, A A |
d
Az St TH B3 Eapt2
(b) =
Py

L
L
s

1 (o) B RA R 45 B (b) T K S R
A B

Fig. 1. Schematic of the equivalent circuit for (a) reflective

metasurface and (b) subwavelength structure.
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Fig. 2. (a) Top view of unit structure; (b) side view of unit
structure; (c) reflection phase and amplitude of unit “1/0”
under different polarizations.
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Fig. 3. The structure consists of 16 basic units composed of

2-bit dual-polarization coding metasurface.
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Table 1.
the symbol “/” represents different digital states.

Geometric parameters of 2-bit dual-polarization coding metasurface unit structure, where the number following

ZH Q0 Wiy Wo 10 h1/10 h2/1(] a/11 Wypep  Way20 hl/20 hz/zo /22 Wyz0  Way30 }1’1/3[) }bz/30
{8 /mm 5 1 4.95 3.61 2.5 3.39 4.95 3.39 2.5 3.23 1 4.95 3.11 2.5

B Q33 Wy Wy e by wy /31

wyzr Pz hys wyzy  Wyzy  hise g

fi/mm  3.05 1.2 329 3.6 2.8

3.43 3.3 2.8 1.35 3.1 3.45 2.6

R, [ 2 AT 3 5 P AR v AR U Ak G i
A Y 4 Fh B ITEE A, o n S FERR AL Y
n B4 I, BIAT 345 i 256 FhEA BASTAE R 41 iy
4-bit B AL GG, i 4 IR, (EREEN
IEEI, %/l w = 0, Wy = hl = hz = GHTJ‘, %ﬁja*‘[ﬂfi
TORE S8 R A v ) P BTG, R SR AR A B B 5T R
b a4k, WE 5 iR,

R T SEBOBE R e R, ASCR T T AR
REMEHE LY, A T BRI T 5, A0 —
PR F AR T 8, B 4-bit ghS 0000—
1111 %R 0—15, FHSPECFAMAI 220 22.5°.

0000 --- 1111 z-polarization

HIIIIIIIIIIHHHW
2 2 | | | | | X O
I 2 s e e s O
LI IS EdEE e dEdE dESF3 M
§ | CIEIGIGICIESEEEdEaEdp dEdE e
0 e o e e e e e e
O P 0 e
g I s s s 1
= | EEECEIEIGE CIE D EEEE e e S
- | EEEEEE EE E O EEEEE e e Fa ]
s | CEEEIEIE EIE EE O S e e
¢ | CEICICICIE CIE CIEIE I S
I
e o= o o
e o et e o o e
| EEEEEEEEEEEEEEEE

Bl 4 256 A FEAS L ITE5 R ALY 4-bit XU Tk 2 i
Fm

Fig. 4. The structure consists of 256 basic units composed
of 4-bit dual-polarization coding metasurface.
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distribution patterns of the vortex electric field with topological charges 2, 4 and 6 under y-polarization incidence.
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Fig. 8. (a) Photography of fabricated sample; (b) the real measurement environment; (c), (d) simulated and measured radiation pat-
terns of vortex electric field intensity at 24 GHz with topological charges of 2 under y-polarization incidence; (e), (f) simulated and
measured phase distribution patterns of vortex electric field at 24 GHz with topological charges of 1 under z-polarization incidence;
(g), (h) simulated and measured phase distribution patterns of vortex electric field at 24 GHz with topological charges of 2 under y-
polarization incidence; (i), (j) measured radiation patterns of vortex electric field intensity at 23 and 25 GHz with topological
charges of 2 under y-polarization incidence; (k), (1) actual OAM purity measurements of sample M1 under = and y polarizations, re-

spectively.
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Abstract

In this paper, a dual-polarization 4-bit coding metasurface is proposed to achieve the flexible manipulation
of different polarization electromagnetic wave reflection angles and the generation of dual-mode vortex beams
by independent manipulation of orthogonal linearly polarized waves. The proposed metasurface is composed of
an H-type metal patch, dielectric substrate, and metal grounding layer from top to bottom. To prove the
proposed concept, we design and fabricate four coding metasurfaces based on the superposition theorem and
holographic theory. One of the coding metasurfaces is designed to verify the ability to manipulate the beam
angle, and each of the other three coding metasurfaces is designed to carry a vortex beam with different
topological charges under orthogonal linearly polarized waves with a central frequency of 24 GHz. The
experimental results show that the theoretical design is highly consistent with the simulation results. Therefore,
it is verified that our proposed 4-bit dual-polarization coding metasurface has a strong and flexible ability to
manipulate the beam reflection angle and generate a high-performance dual-mode vortex beam antenna.
Because of the wide application prospect of vortex beams in the communication field, we have reason to believe
that the proposed ultra-thin dual-mode vortex generator will have potential applications in wireless

communication systems in the fields of images and microwaves.
Keywords: dual-polarization, vortex beam, coding metasurface
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