#) 32 2 3R Acta Phys. Sin. Vol. 72, No. 14 (2023)

148701

W=ARBEA M X HE T NIRRT R E

R KRBT

RiE EFH

(BRE T Ry~ pe, S 230009)

(2023 4E 3 A 27 HULE]; 2023 4F 4 A 27 AU EMEHH)

X LM T WA AR 5 B v 2 BORT WL LAAR A

R L IS Fdln A HGE IR 2, X SF 2 SUR TR AR 1

A A3 S 8 00 i Y 2R 0T DL RERRAR . St B TR TR AR A A XSk A A% S0nT L RE
FE. M X5 2 SURTSE GBI 15 (30 5 AR R, X P RIFSE 1 B0 (0 IR R ] 22 (L BB T, 3= AR JE AR AL
DO X IR A U AR A2 I #4501 2% S0 nT DL 2 BB GBI 18] B A A8 A R . 45 2R R o R o IR
Wi 2 2 0 M) SO0 = 2 A S A XA 4 9 (S A 2% S0 RT L B2 ) e I Bt R 3% ek F) 38 T T8 . S AR A%
5m/2 I, U= AT ARG X5k T8 {0 2 SCRT UL E 7 0 (0 BRI LU XURE TR AR 2 T A3 B0 2 80T I
FEPE W 2 21%, £ 2 GIRUT 48w =0 23%. M7EZ @MUIT, BEE X GF2e-F 2 6e i f BOU M fe i 9 4%
B IR AR SRS BB, UM AL 5 A A5 S0RT WL RE Y DA (1 34 2 B0 1 e S S5 SR AT AR Sy X 5 28 BUAR

RO AR S B AR RE AL L B BIE 45 .

REEIR : X PR, S, = MIEAREDEHE, Z20nT UL

PACS: 87.59.-e, 87.64.mh, 07.60.Ly, 87.57.C—

1 5 =

FEit A0 20 4EH, X SEOEHET U4 AR
2T Z ST e -1 R X 44k Talbot-
Lau T4, fefEA 20 H S50 = X G2 I8 500
AR UG -1 HE X RO TR, AR
WHAE 7358 Talbot FE B AL P~ T EIAE. S ik
EAEFADL B T s, P AR 2 e A SR T AL
I AT R B SR R AR, RERS RIS R A 1)1
S PrERImRE EAR 04 GEAEsk, X BT
AOBSUG B ARTE B 22 4G 140) R R R 1617 2 Ak
AR B T A R ANMA.

1E X B4k Talbot-Lau T#ALH, b THRE#
D SRR, AR A R R R A TLCK. T2,
AT SEMATT SR 15 195 2 s iy i At A LA

DOI: 10.7498/aps.72.20230461

K, ANRERAR R ROT I IL A TOK 8 USRI #5% 4%
HE. RIFRX — A, Talbot-Lau T ¥ AEFR
ANTTHCE T WM. SO 5 5 7 BT
POARSU R A Y. X R, R Moire 45 80800 ik
TE BB LGN A BL o B KRR i 2k g -4,
SR, WSO, T AEAS I S X G2z, 10K
SRR AR SR R BRI, B0 T R S A KU (18
LERPR T X 7%k Talbot-Lau T #AXAEIG R E 2
NG AT B AR R A ) 0 .

N T TR X B4 Talbot-Lau T X B J7) FR
PE, X ST SHRAD TR AR Rl 19291,
SEEGIF SR UESE T X S OO el T P i 7E
P 21222425 K[E]F Talbot-Lau T ¥, X HF£k
XURBASE S35 ASCAS (T W SO, T2k H 2 A4~
AL CHE R o s, X BBl AR T i 2
AR, SR G AT PR B TR 5T 5

*EFEH KRB IS @S 11475170, U1532113, 11905041), H e 75 42 3 A R F L 55 2% (3t v 5. JZ2022HGTB0244)

LB ARBIEIE S (S 2208085 MA18) ¥ Wi FiGLE.

t BIEVEE. E-mail: dywangzl@hfut.edu.cn
©2023 HEHEFS Chinese Physical Society

http://wulixb.iphy.ac.cn

148701-1


mailto:dywangzl@hfut.edu.cn
mailto:dywangzl@hfut.edu.cn

#) 32 % 3R Acta Phys. Sin. Vol. 72, No. 14 (2023) 148701

JEZREL. FUrb ARSI 1 B0 R S S0 i 2R S RE
R AR RN & B, AR BERHAEI &5 &
FOP BRI/ INE AR EOUAE D 15 St 8 A 9. A,
XA A A AN 2D AS 325 5 19
X PRI, A2 T EUREA R S5 14 2 i 29,

TE X SHEOUHME TG, HOR A RS
P53 e m] DL BE AR B AR A, DR e i R U R
ot v (7 R LU IR 2246 T 1R 4R U028 HRIT, XA
RO CH T30 A5G il AR ARG, Sy i
(A5 B0T ILRE HUAUAIR. Kagias S5 2 TR GO
9.5 pm HESHE XA IR AR AL S Ly
0.5, IR 1.3 pm 19 XUETE AR 62
ACHEAT AR S5, ARAF B AR ECRT WBE 2R 16%; Lei
S5 PR AL g X B, M= 0.25, 4

19 24 pm A PECA ARG & 2= Hd o 0.5,

JEIXI N 5.6 wm B RUEIE AR EMT G T A%
1G5, FRAGAI S E0RT WLEE 200 17%; Ge 45 1280 7
AR RST R 7 wm (R4 X BRI XAt
W2 R 0.5 AR 4.364 pm 1 4.640 pm
PR TE AR TG T AR S g, ARAS Y
2800 WL REAUN 7.5%, AIRFHE T I FH B 48 55 1
10%. i, 5 2 ZHRR Q] i — 2 2 5 4 80T WL
B, LIRS X BRSNS T A A Ak BT
A AR A A = 2 AR S AU 3 T . 53 48,
2 H T EBTE X $H4E Talbot-Lau T#4XHr, FIH
—FIE AP AR A O e, RERS I AR e

DL EE 2050 ST AR SR T = AR A A
|

I AR5l ( 1 1 >
I(z)=—3 in — -
(=) M3 Z a {Ml Mszps  Mapy

2 l,n,s€Z

Jetlh X BT WAETE, SRR AR LI A0 4%
Zrn] WL AR AL, LM S S8 SRR AL
AP TE .

2 REZAMMEAM X HETFHN
Hy B8 L AT
2.1 HERATHREESSH
B 1 R = AT AR RO X T2 TR &
. P Ryl XSRS AR G2 M G Fryh i
d AR Gy BRI GH Go I B RS, Ry by
RS U G BRI 25 %t e

G Gy RIS

XHTEE

T
L.
Yy

1 WEATEARDE X ST AORER

Fig. 1. Schematic diagram of X-ray interferometer using

dual triangular phase gratings.
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Fig. 2. Fringe visibility as a function of grating spacing and grating phase shift: (a) Monochromatic illumination with a source size

of 9.5 pm; (b) monochromatic illumination with a source size of 40 pm; (c) polychromatic illumination with a source size of 9.5 pm;

(d) polychromatic illumination with a source size of 40 pm.
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Fig. 3. Fringe visibility as a function of grating spacing un-
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Table 1.  Visibility peak, corresponding grating spacing and FWHM of visibility curve under monochromatic illumination.
25 = SAIEARRL G T ARGLGHT
n/2 T 3n/2 2n 5m/2 /2 T
Vi 0.25 0.48 0.64 0.68 0.74 0.34 0.61
s/mm 9.8 6.6. 4.8 3.7 3.0 10.8 3.7
W/mm 12.1 9.1 5.8 4.9 3.4 12.0 3.8
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Table 2.  Visibility peak, corresponding grating spacing, and FWHM of visibility curve under polychromatic illumination.
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Fig. 5. Fringe visibility as a function of grating spacing with a source size of 7 um: (a) Peak voltage of 55 kV; (b) peak voltage of

75 kV; (c) peak voltage of 95 kV.
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ST AL SR 80T DL EEVEE Ry 0.42; B KTEAH
PP B £ 20T DL EE IR 0.28. 2ikifE
JRSE R 25 pm B, X 5m/2 = MAIEARLEHET 3
ALY 5 80RT WL IR g 0.38, L 0.42 FIE T 9.5%:;
BUR XL o KB T A7 ST P 2 80nT DL 8 0 £
9 0.17, H 0.28 FRET 39.2%. 4G SR <1
JNE] 40 pm W, X 5m/2 = AIEAROEHET Y
b n] WLEEIEAE 7 0.34, [ 0.42 FIET 19.0%; It
B XL 7o T8 AR ST 5 A A SR 0T UL R (B

3 OGIAESRST R T um, W RSN 55, 75 F1 95 KV i, ARECHT ULEEWEAE | Xk 14 A ] R A 2T UL RE 2k
i FWHM
Table 3. Visibility peak, corresponding grating spacing and FWHM of visibility curve with source size of 7 pm and peak
voltage of 55, 75, and 95 kV, respectively.
I L= R IAROCHE SURETE ARG
Ji/kV /2 n 31/2 on 5m/2 /2 -
74 0.20 0.32 0.37 0.41 0.42 0.22 0.28
55 s/mm 67.9 37.3 35.6 26.7 19.5 25.7 37.3
W/mm 117.3 96.3 81.5 69.3 67.6 44.8 52.9
Vi 0.14 0.27 0.31 0.34 0.37 0.16 0.25
75 s/mm 71.0 40.1 38.9 29.4 27.5 26.7 37.4
W/mm 116.7 105.7 96.6 85.8 79.9 51.8 53.6
74 0.11 0.20 0.26 0.29 0.32 0.13 0.22
95 s/mm 76.5 414 45.4 43.6 32.1 26.7 38.8
W/mm 116.7 111.3 104.1 98.3 92.1 55.3 54.1
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Fig. 6. Fringe visibility as a function of grating spacing with peak voltage of 55 kV: (a) Source size of 7 um; (b) source size of 25 pm;

(¢) source size of 40 pm.

T4 WEHERRSBIN 55 KV, SIS TN 7, 25 40 pm B, AR80R] LIRS R S B A AR ST DL 2k
i FWHM
Table 4.  Visibility peak, corresponding grating spacing and FWHM of visibility curve with peak voltage of 55 kV and
source size of 7, 25, and 40 pm, respectively.
HUIAR = FTBAIRDHE TR
/um /2 n 3m/2 on 5m/2 /2 .
% 0.20 0.32 0.37 0.41 0.42 0.22 0.28
7 s/mm 67.9 37.3 35.6 26.7 19.5 25.7 37.3
W/mm 117.3 96.3 81.5 69.3 67.6 44.8 52.9
Vo 0.14 0.25 0.31 0.34 0.38 0.17 0.17
25 s/mm 48.6 35.0 28.3 24.9 21.6 21.5 28.3
W/mm 75.8 66.2 61.3 57.5 54.5 34.3 43.3
% 0.10 0.19 0.26 0.31 0.34 0.12 0.11
40 s/mm 36.2 29.2 24.1 21.1 19.3 17.9 21.1
W/mm 52.5 49.1 46.3 44.1 42.3 27.9 254

0.11, k£ 0.28 FFE T 60.7%. M m HIEAHALEHET
VALY S5 B0RT UL BE VAR T R B K AT e 2 R A 7
X HETE AR M T WA SR8 1 = 28 BT DB
7 PEACE R 19201 AR (2) AT ISR, YOk TR R
FURSE /IR 1= 25 R 19 25 8] FH B 19 4L
SV AR /)N, I T TR AT T L.

KL, 25675 IEA ST DL BRI | (BRI
FE RS U, RSB0 5 /2 =B AH
BT
4

“a
X AN CAE P54 e B R 1

W AR BORGARI s BLHE o Bk, sl 1 fd I
W EAE S SR B SR AT XUB:. PRI, X SRR XU

4 &

S A7 L BAR 25 5 e B U AT )
AL (R SR, TR SE RIS T, il FHAL
TR AR IS B0 ) AR m] DL LA 2427281,
ECE AR R PR YRR, I, R R
LAY X BT R, A7 b B R AR g AR BRI
PR TE IR AR . AN SCHE XU = A TE AL XS £&
TR ARG WLEEWTSE, IS5 SRS AR
90 SUEOE B X EE . AT XS XU e+
WA SR BE A3 KL, XFLUOFsE T R 5 20
TRHR, ARSIV AT ) 2 8] DL
BECH R | SRS AR LAY, SRR IR
W R Z ORI, W= MAIEAHADEHE X 54k
TR AR ST UL Y W B MR A% 2 A
T, T W (X 17 8 S TR | e ml LI il 26
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Fringe visibility in X-ray interferometer using
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Abstract

In recent years, the X-ray interferometer using dual phase gratings has been extensively studied. The large
periodic fringes produced by the X-ray interferometer using dual phase gratings can be directly detected by
ordinary detectors. At the same time, the X-ray interferometer using dual phase gratings can reduce the
radiation dose of the sample without using absorption gratings. Meanwhile, a high fringe visibility is always
preferred to achieve a high signal-to-noise ratio for X-ray grating interferometry. However, recent studies have
reported that experimental fringe visibility in X-ray interferometer using dual rectangular phase gratings is
relatively low. Therefore, it is necessary to further increase the fringe visibility in X-ray interferometry using
dual phase gratings. This work focuses on the analysis of fringe visibility in X-ray interferometer using dual
triangular phase gratings. Based on the fringe intensity distribution formula of X-ray dual phase grating
interferometer, the fringe visibility of the dual triangular phase grating interferometer is investigated as a
function of the grating spacing under monochromatic and polychromatic illumination, respectively. For
comparison, the fringe visibility of the dual rectangular phase grating interferometer is also studied under the
same condition. The results show that the maximum fringe visibility of the dual triangular phase grating
interferometer increases with the phase shift increasing regardless of monochromatic or polychromatic
illumination. Under monochromatic illumination, the maximum fringe visibility of dual 5m/2 triangular phase
gratings is about 21% higher than that of dual rectangular phase gratings. Under polychromatic illumination,
the fringe visibility of dual 57/2 triangular phase gratings is at least 23% higher than that of dual rectangular
phase gratings. Under polychromatic illumination, the greater the deviation of X-ray average energy from the
grating design energy, the greater the decrease of maximum fringe visibility of the dual phase grating
interferometer is. In addition, with the increase of the focal size of X-ray source, the maximum fringe visibility
of the dual phase grating interferometer decreases, under polychromatic illumination. We hope that those
results can be used as guidelines for designing and optimizing X-ray interferometer using dual triangular phase

gratings.
Keywords: X-ray imaging, grating interferometer, triangular phase grating, fringe visibility
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