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Fig. 1. Typical series resonant circuit.
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Fig. 2. Diagram of Bessel function with modulation depth.
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Fig. 3. Experimental setup for testing resonant photoelectric devices (Laser, solid-state laser; OI, optical isolator; A/2, half-wave-

plate; PBS, polarization beam splitter; RPM, resonant electro-optic phase modulator; HR, high reflective mirror; OSC, oscilloscope;

MC, mode cleaner; RPD, resonant photodetector; PD, normal photodetector; NA, network analyzer).
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Fig. 7. The test results of signal to noise ratio and peak-to-peak of MC cavity error signal.
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Abstract

Photoelectric functional device with specific optical, electrical and photoelectric conversion effects is one of
the most important resources of modern information science and technology. Electro-optic modulator and
photodetector are very important photoelectric functional devices, which are key devices in the fields of
frequency locking, feedback control, photoelectric information conversion, optical communication, photoelectric
information modulation, etc., and play an irreplaceable role in frequency stabilization locking technology of
PDH (Pound-Drever-Hall, simply referred to as PDH). The PDH technology is widely used in researches of
large scientific devices, quantum optics, optical communication and other fields. Using electro-optical phase
modulator to carry out laser phase modulation is the primary process to realize frequency stabilization locking
of standard PDH. Photoelectric detection can implement the photoelectric conversion of the carried weak
modulation signal and spectral peak signal into electrical signal, and then feedback control through proportional
integral and differential circuits, so as to achieve stable locking and frequency stabilization. The resonant
electro-optical phase modulation (RPM) with high modulation depth, low power consumption and low half-
wave voltage and microwatt resonant photoelectric detection (RPD) functional device with high signal-to-noise
(SNR) ratio are invented to meet the demand for extraction and detection of extremely weak signals. The
resonant circuit is composed of the single-end wedge-angle lithium niobate crystal, low noise photodiode and
low-loss and high-Q electronic components. Low power consumption, high modulation depth electro-optic
modulation, and high gain photoelectric detection are realized by the principle of resonant enhancement. When
the optimal modulation frequency point is 10 MHz, the bandwidth of RPM is 225 kHz with @ of 44.4, when the
modulation depth is 1.435, the RPM requires RF drive voltage of RPM to be 4 V. When the optimal modulation
frequency point is 20 MHz, the bandwidth of RPM is 460 kHz with @ of 43.5, the required RF drive voltage of
RPM is 6.5 V when the modulation depth is 1.435. The optimal detection frequency point of the self-invent
RPD is 20.00 MHz, with a bandwidth of 1 MHz, Q of 20, the gain of 80 dB at 100 pW. With the home-made
RPM and RPD in the extraction loop for extremely weak signal, the SNR of error signal is as high as 5.088 at
10 pW, 34.933 at 50 uW and 58.7 at 100 pW. Such a loop improves the performance and stability of the entire
feedback control loop by optimizing parameters of proportional integral differential, which provides key devices
and technological approaches for preparing a highly stable quantum light source and ultra-stable laser.

Keywords: photoelectric functional device, electro-optical modulation, photoelectric detection, weak signal

extraction

PACS: 85.60.—q, 42.30.Lr, 85.60.Gz, 07.50.Qx DOI: 10.7498 /aps.72.20230485

* Project supported by the National Key R&D Program of China (Grant No. 2020YFC2200402), the National Natural Science
Foundation of China (Grants Nos. 62027821, 62225504, 62035015, U22A6003, 12174234, 12274275), the Key R&D Program
of Shanxi, China (Grant No. 202102150101003), and the Program for Sanjin Scholar of Shanxi Province, China.

1 Corresponding author. E-mail: tianlong@sxu.edu.cn

1 Corresponding author. E-mail: yhzheng@sxu.edu.cn

148502-9


mailto:tianlong@sxu.edu.cn
mailto:tianlong@sxu.edu.cn
mailto:yhzheng@sxu.edu.cn
mailto:yhzheng@sxu.edu.cn

Chinese Physical Society

%ﬂ *ﬁActa Physica Sinica

Institute of Physics, CAS

TR AL e AR A7 R ) ROt LRI Th RE B4 I R R B
W R KM KEK ZRMS AW IRE FIL LSTF KAR FEHE

Resonant electro—optic phase modulator and photodetector for stabilizing laser frequency and quantum optics
TianLong Zheng Li-Ang  Zhang Xiao-Li WuYi-Miao  Wang Qing-Wei QinBo Wang Ya-dun Li
Wei  Shi Shao-Ping Chen Li-Rong  Zheng Yao-Hui

5] Fi{i5 &, Citation: Acta Physica Sinica, 72, 148502 (2023)  DOI: 10.7498/aps.72.20230485

TELR T2 View online: https://doi.org/10.7498/aps.72.20230485

A ZE View table of contents: http://wulixb.iphy.ac.cn

AT ARG HAh SCEE

Articles you may be interested in

MR e 5 A F PRI 2
Photogating effect in two—dimensional photodetectors

PyFEEEAR. 2021, 70(2): 027801  https:/doi.org/10.7498/aps.70.20201325

— LT HOEIR T OGS T R4 X T 1
Method of measuring absolute distance based on spectral interferometry using an electro—optic comb

YrE2E 4. 2020, 69(9): 090601  https:/doi.org/10.7498/aps.69.2020008 1

HET LG AR AT AR R AR (8 i 3 257 AR TR L SR
Dynamic generation of vortex beam based on partial phase modulation of electro—optical crystal plate

PIFR2EAR. 2022, 71(20): 207801  https:/doi.org/10.7498/aps.71.20220835

BEOCL REPROLE P G AR RO L 3R S R

Influence of electro—optic modulator on Er—doped fiber femtosecond laser

WIFREAR. 2021, 70(7): 074203 https://doi.org/10.7498/aps.70.20201564

DL RN N P X BRI 19 T A 32 B 0 PR PR PR RERZ A 52

Influence of photoelectric conversion noise on closed—loop performance of adaptive SMF coupling device

WAL 2021, 70(22): 224212 hitps://doi.org/10.7498/aps.70.20210615

ARV A A 2 VR i ) e R B B 1 R R R R 2

Indium tin oxid/germanium Schottky photodetectors modulated by ultra—thin dielectric intercalation

WAL 2021, 70(17): 178506 https://doi.org/10.7498/aps.70.20210138


https://wulixb.iphy.ac.cn
https://doi.org/10.7498/aps.72.20230485
http://wulixb.iphy.ac.cn
https://doi.org/10.7498/aps.70.20201325
https://doi.org/10.7498/aps.69.20200081
https://doi.org/10.7498/aps.71.20220835
https://doi.org/10.7498/aps.70.20201564
https://doi.org/10.7498/aps.70.20210615
https://doi.org/10.7498/aps.70.20210138

	1 引　言
	2 谐振型光电功能器件的原理及设计
	3 实验装置、过程及结果分析
	4 结论与展望
	参考文献

