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Fig. 1. (a) Two-photon potoassociation excitation diagram, the first photon, 852 nm laser, drives the [6Si,, F =4) —
|6P3/2, F’ = 5) transition, and the second photon, 510 nm laser, drives the |6P3/, F'=5) — [31Ds;) transition, the 852 nm laser fre-
quency is blue shifted from |6P3,, F/=5) by 360 MHz using a double-pass acousto-optic modulator (AOM), the 510 nm laser fre-
quency is scanned to red detuning from the 31D;,, Rydberg atomic line, Rydberg molecules are formed when the detuning from the
atomic line matches a molecular binding energy; (b) timing sequence, after switching off the MOT and ODT beams, the 852 nm and
510 nm lasers are used to excite ground state cesium atoms to form the Rydberg atoms and molecules, a ramped electric field is fi-
nally applied to accelerate the ions that are produced by autoionization to MCP for collection and detection; (c) experimental
schematic of ultralong-range Rydberg molecules, the 852 nm (red beam) and 510 nm (green beam) lasers counterpropagate through
a cold Cs atom cloud located in a crossed optical dipole trap (yellow beams) and excite ground state atoms to form Rydberg atoms

and molecules.
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Fig. 2. The photoassosiation spectra of 31Dy /5468, o(F = 4)
long-range Rydberg molecules. The position of 0-detuning
resonant excitation is 31D;/, atoms signal. The two small
peaks at detuning, —162.8 MHz and —66.6 MHz, are the
long-range Rydberg molecules signals, and they are in-
duced due to the pure triplet potential and mixed singlet
and triplet potential. The black symbols show the experi-
mental measurement of six groups of indepenent data, and
the error bars are the standard errors of six independent
measurements. The red solid line displays smoothed aver-

age.
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Fig. 3. The calculations of potential energy curves of 31D5 5+
6S,)5(F = 4) long-range Rydberg molecules. The shallow
potential (dashed black) comes from hyperfine-mixed sing-
let-triplet scattering, and the deep potential (solid black) is
due to the pure triplet scattering. The inset is an enlarge-
ment of orange region. The vibrational wave functions in
the outermost wells are indicated in color filled curves for v =

0 of shallow (green) and deep (pink) potential.
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Fig. 4. Phase shifts for low-energy electron scattering from
Cs. The 's and 3s are adjusted s-wave singlet and triplet
scattering phase shift, respectively. For p-wave phase shifts
we still used nonrelativistic functions provided by
Khuskivadze et al.?dl.
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Fig. 5. Comparison between calculated potential energy
curves and experimental measurement of 31Dj;/;+6S, /Q(F =
4) long-range Rydberg molecules: (a) The calculations of
31D;5+6S; jo(F' = 4) long-range Rydberg molecules poten-
tial energy curves and the vibrational wave functions in the
outermost wells, the green and pink color filled curves are v =
0 vibrational wave functions of hyperfine-mixed singlet-
triplet potential and pure triplet potential, respectively; (b) the
measurments of 31Dj5/3+6S;,(F = 4) long-range Rydberg
molecules, the two peaks marked with green and pink tri-
angles are mixed and triplet molecules signals, respectively,
the blue solid lines are Gaussian fittings to the molecular

peaks.
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Table 1. Comparison of theoretical calculation and
experimental measurement of the ground state bind-
ing energy of mixed state and triplet state molecule
with v = 0 vibration, the s-wave zero energy scatter-
ing length of a$(0)=-1.92ap and a(0)=—19.16a0

is used in the calculation.
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Abstract

In this paper, we conduct the experiment and simulation on 31Dj;/,+6S;/,(F' = 4) Cs, ultralong-range
Rydberg molecules (ULRMs). These molecules are prepared by employing a two-photon photoassociation
scheme. Two distinct ultralong-range Rydberg molecular signals are observed at the detuning —162.8 MHz and
~66.6 MHz of 31D;/, atomic resonant line, which are bound by the pure triplet potential and mixed singlet-
triplet potential, respectively. We use the model of scattering interaction between the Rydberg electron and
ground-state atom to perform the simulation. The molecular potential-energy curves are obtained by solving the
Hamiltonian on a grid of intermolecular distances R. The calculations of the binding energy of pure triplet and
mixed singlet-triplet v = 0 vibrational states are compared with the experimental measurements. The calculated
and measured values of the binding energy are in good agreement. The s-wave pure triplet and singlet zero-
energy scattering length are obtained to be af(0) = —19.16a¢p and a$(0) = —1.92a¢, respectively. This kind of
molecule with large size, abundant vibrational states and large permanent electric dipole moment is an excellent
candidate for studying low-energy collision dynamics. The study of these molecules will further deepen and

enrich the understanding of the special binding mechanism and exotic properties of the ULRMs.

Keywords: ultralong-range Rydberg molecules, low energy electron scattering, adiabatic potential energy

curves, molecular vibration states
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