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Fig. 1. (a) Geometric structure of isolated monolayer InX (X = Se/Te); (b) the first Brillouin zone and high-symmetry K point dis-

tributions of primitive unit cell for InX.
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Fig. 2. The band structures (left) and atom projected density of states (right) of isolated monolayer InSe (a), (b) and InTe (c), (d).

T In B9 s PLE LK Se/Te #) p HUEA AL, 4T
W IR EZH In A9 p P LK Se/Te ) p HLIE
B R PHBE SR i 2 T A, bR T 2 EA A
T TR A5 A4, W ELR B SRR I
RO THE R RA SR RA X, B T4
RO, AR AR . o TR 2
InSe Fll InTe AY#R I T4 555 & K/, £F X} InSe
il InTe e L5 R 1 4, GERIXIE] 100 meV LA
P Sy T AN R A 5, TR T
P73 )2 InSe 11 InTe BYHL T A2 /CARUT =, B
PRI 240055 Jo TR 0 A AR AN B 5 B B, HL ik
ZERACSRTER 1 rh. W5k 1781, InSe Fl InTe #f
FAR NIRRT (50514 0.17mg F10.13my),

(S2)
1.0

0.5

—0.5

(S2)
1.0

0.5

PR 2 InSe (a), (b) Fl InTe (c), (d) BBEH 25 F
(

— In(s) — In(d) — Se(p)
— In(p) — Se(s)

(b)

E—Eyp/eV

-2 0
Projected dos/(states-eV—1)

—— In(s) — In(d) —— Te(p)
— In(p) — Te(s)

(d)

2+

E—Egr/eV

Projected dos/(states-eV—1)

Iy

i (76) PR TBOE 0 BWE ()

XU MR IR R SRR, B Skt
52T InSe Al InTe EA 1R = A HE T A8 % B9 4
XFF InSe i T A RUEEM 5, InTe B HL -1
22 UNA R E /N, YL InTe R FiT B3RS
g,
R 1 InSe Ml InTe FH7 FIMHHY i1 L FFIZS 7T
BT
Table 1.

holes of conduction and valence band edges for InSe
and InTe.

i)

The effective masses of electrons and
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E, (InTe)/eV

5 10 20 30

0.419 0.350 0.342 0.338 0.337

0.294 0.244 0.237 0.235 0.234
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Fig. 3. (a) The band edge alignments of isolated monolayer InSe and InTe based on PBE and GW method; (b) quasi-particle en-

ergy level, optical band gap and schematic diagram of exciton binding energy.
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Fig. 4. The absorption spectrum of monolayer InSe (a), (b) and monolayer InTe (c), (d) along z and z polarization directions.
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Fig. 7. The relationship diagrams of exciton binding ener-

gies of monolayer InSe and InTe with the variation of num-

ber of h-BN atomic layers.
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Fig. B1. Fitted results of conduction band edge and valence band edge of InSe and InTe along both a (direction 1 in the figure) and

b (direction 2 in the figure).
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Abstract

The calculations using GW method based on Green’s function show that two-dimensional monolayer InSe
and InTe have desired electronic band gaps for absorbing visible light, high electron mobilities, and suitable
electronic band structures for water splitting, and that the spin orbit coupling (SOC) leads to an indirect-to -
direct band gap transition for monolayer InTe. On the basis of quasi-particle energy levels, the calculations via
solving Bethe-Salpter equation (BSE) show that the exciton binding energy of isolated monolayer InSe and InTe
are much higher than that of the dissociation energy of exciton at room temperature. On the other hand, two-
dimensional semiconductors in laboratory are often supported by substrates for mechanical stability, and the
atomic thickness values of two-dimensional semiconductors are also various in different experiments. These
factors will change the dielectric environments of two-dimensional semiconductor, and the further calculations
show that the exciton binding energy of InSe and InTe decrease with the increase of the thickness of InSe and
InTe and also the thickness of their substrates, also revealing that the exciton binding energy can be accurately
controlled by engineering the thickness of two-dimensional semiconductors and the substrates. Our results
provide important theoretical basis for accurately controlling the binding energy of two-dimensional InSe and
InTe.
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