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Table 1.  The structural parameters of SGT-MOS-
FET product.
S5 BIIRIE fem?  JRJE/FEE (wm/pm)
n-+JRIX 5.0x10Y 0.30
piEIX 1.3x10'7 0.80
plEF X 1.5%10%6 7.40
p+HfJRE 1.5x101 15.00
ITERED — 4.70
SRR — 4.30
IR E® — 1.00
AT B RE@D — 3.20
HIE SRS — 1.80
BHHEOG — 1.40
YA 2 EQD — 0.58
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Fig. 1. The SEM photo of SGT-MOSFE product.
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Fig. 2. The structures of two-cell VUMOSFET (a), CCMOSFET (b), SGT - MOSFET (c).
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Fig. 3. (a) Testing circuit of the gate charge; (b) test waveform of the gate charge.
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Fig. 4. Comparison of breakdown curves of different struc-

tures.

pay | A % ../ SGT-MOSFET
3.0¢ s b
25 8 "2/ CCMOSFET
2.0 !
1.5 4.
10f
051/

2200009200002302300020003000 VUMOSFET

Electric field/
(105 V-cm™1)

1 2 3 4 5 6 7
Y/pm

Pl 5 AN [ 4546 r 3 i B 23 A1 12
Fig. 5. The electric field strength distribution diagram of

different structures.

H T N R R R g R L A
PERYE M, W 2 B 1—3 IR T 3 FhAS[H] &5
4 1 L 384 A th 26 a1 6 7R . 5 CCMOSFET
AHEE, SGT-MOSFET 37 E 5, WIRET SGT-
MOSFET {4l W5 ] (1) 23 7807 T2 H 3/, Japs
)R BT A B A 2). IR SGT-MOSFET

148501-3



) 32 2 3R Acta Phys. Sin. Vol. 72, No. 14 (2023) 148501

A AR B S, A RREOR, g

ST I 5], 4 WA

t20p Pr— 41 ERIAREHTIEEIAER T
2 10} £ ] DAL 437 AT, 540 E £ T S B8 Rl
2500 P LS ML I8 5 S MRS 2 A0S 9, T 5
2 Gl L B A4 A B RO A R
Dol e - HEHE | SRS X P 2k BE 5. SRR Hoxd L
Sl S JEE SR SR R ST P 5 A, PR AT 0 By S
2 owf A - COMOSFET P 25185 P 2 5T 6 1 P S5 AT T 28 245

10 + —— SGT-MOSFET NN

f . FE R AR

%12 3 4 5 6 7 8 9 10 " _
¥/um U 8 Frs g AU SGT-MOSFET 25

. __Ll%: N — V) 7k N \

6 RIS s A W:T\ A, %;ﬁ”THT’% ARER g X, U
Fig. 6. The potential distribution curves of different struc- g EH@{@M‘ lETJ @EE/JXTWHW Y% IZIEP W
tures. j‘j 1/2 DE%E, Tox j‘j}?‘ﬁi% 'ﬁ/T%I:IEﬂE’J%%L

JRIRJE, L, M{AMRIER XK, D, A p 2EIX

CCMOSFET . SGT-MOSFET 7£ A [ 37 44 )& (VREE, Wose R2SRIFATIXAE p FEX HUJRSE, Wrse
PORIEGERE Lo IS AP 7 W, FE0CHISE o o 7 5 e R FEE. BB 1 (1)
PEAZERTROL T SEGEEETy 1.4 wm BF, SRS o o s el 43 p RIS DX A Al
B EURRE R TR FEATHAEN 24 im pepm—pasge
1 3.4 w16, B0 U o 5 L I S
W/, I ELA T GG, 2 PRI R
Y AU A R T AE 14 B ST
SRR P A T DA A BRI n R, U
FEE 725 {1 25 ] B A7 X8 5 9 S WAL/ ﬁﬁim
LB 2l — 2 DA LS S 7, AT AR
g . 7E 2.4 pm A1 3.4 pm ﬁjﬁﬁ@@ﬁﬁ
B SRR St BB R50 n

SRS X AL, (725 A P DI S0/, o 5L F
ﬂs&.

120

- W,

=1.
—k— Winesa = 2.4 nm
Hor 0 Winesa = 3.4 11111/
100 K8 SGT-MOSFET £5#4/r % &l

4 pm

Fig. 8. The schematic diagram of SGT-MOSFET.

/ X5 ML SERS D L5390 53, LI
. / N B PO SRS X 5 4L, AT — 0 B

Ver/V
©
o

70

. T~ Ji R
60 —, 52 52 N
0.2 0.3 0.4 0.5 0.6 #(z,y) + #(z,y) - 1D (1)
Tox/nm 9x? 9y Esi

Bt o, y) i o J7 10 ZEEREIT IR B A =100

8@ (07y)l‘+ 62@ (O’y)xZ. (2>

7 AR EIERE T 8y o i

Fig. 7. The breakdown voltage under different field oxygen _
z,y) =¢(0,y) +
thicknesses. v (7,9) =¢(0.y) or 20x2

148501-4



#) 32 % 3R Acta Phys. Sin. Vol. 72, No. 14 (2023) 148501
y il Ry VR Al T A DX A B, S Bl AR A ] gz 7l
g B 2, WA R4 8(0,y)  gNap (13)
a(p(()?y) -0 3 8:[] B Esi )

B = 75 [ A3 A= B SR BE X S oA, WA s
FUL RS RSN )T TN

&P(Wm y) — (P(Wn + T0x7 y) B @(Wm y) (4)
O KT ’

Horp

K== (5)

Eox
H1 T B b 5 DA A Bz, R 0, WA i A
/%14:
©(Wh + Tox, y) = 0. (6)
¥ (2)—(6) ACATFIAM AR (1) 2, A5

p(0,y) ¢ (0,y) _ qNp )
8y2 T2 B Esi ’

Hr

T = \/ 1/2W,2 4+ KW, T (8)
i I A (RS X AR A LR Vs, TIIEE
(0, D,) F1 (0, L,) /oA i 5554
©(0,Dp) =0, (9)
o(z, Dy + Ly) = Va. (10)
MR (7) Bl 4AT (9) #0 (10) XnTf SGT-
MOSFET V4R [a]75 88 X 1) H i B A A 22 1k K 21
_ Vo cosh[(y — Dy)/T] | gNpT
T sinh[(D, + Ly)/T) Esi

) {cosh[(Ln — y+2D,)/T] - coshl(y — D,)/T] }
sinh[(Dp + Ly)/T]

E2(07 y)

—D — D,
tcosh [y 7 p} cosh [y p}

n qNpt B t
Esi T'sinh [Dp—i—Ln} sinh [Dp+Ln]

T t

(11)
/\rl_l
Wy

t=—. 12
7 (12)

AT (11) AR, PR TR] EE A% DX Y HL 756k
BEOM A SN IR R V,, A EE W, AR
JRHE T, WHERIER XK L, IRIER X B2
HTE Ny A5 p HE DA R R #0 14) FEL 377 56 14 73 A1
EERBAMSLIGE, N T A, Bp XN

¥ y= D, M y= D+L, LAHIZRERIE
= (11) A5
B Va
~ Tsinh[( D, + Ly)/T)]

n gNpT [cosh[(Dp +Ly)/T]| — 1}
sinh [( D, + Ly)/T]

E2 (07 Dp)

Esi

t
Tsinh [( D, + Ly) /T

gNpT
Esi

+

1
~ sinh[( Dy + Ly) /t]] ’ (14)

E5(0,Dp + Ly)

W cosh(L,/T)
"~ T sinh[( Dy + L) /T]

gNpT' [ cosh(D,/T) — cosh(Ly/T)
T { sinh [( Dy + Ln)/T] }

gNpT { tcosh (L, /T)

~_ cosh (Ly/T) ]
T [Dp+ L)/ T] '

Esi sinh (D, + L)/1]
(15

H (13)—(15) A A5 p JE X R {A A8 IS F Y FL. 37 01

qNa

si

El (0’ y) =

(y — Dp) + E2(0, Dp)a (16)

qNp

E3 (Oa y) = Eu
si

(Dp + Ly — y) + E5 (0, Dy + Ly) -

(17)
B (16) 2R (17) A48 p JEDORIYA RS G AR 1) 25 [A]
FA iy DX R B 43l ok

EQ(O, Dp)Esi
Wpge = ———_P7 20 18
PSC A (18)
FE5(0, Dy + Ly)esi
Wrsc = 2(0, Dp + Ln)es . (19)

qNp
X p FE DX IR R ) L 37 8 B AR o3 T A5
E% (0’ Dp)gsi

Wi = %Ez((), Dy)Wpsc = %Ny (20)
v 1E2(07 L) Wrse = E2(0,D, + Ln)é‘si' (21)
2 2gNp
¥ (20) A (21) AR
Vit Vot Vs=V, (22)

148501-5



¥ 1B ¥ Acta Phys. Sin.

Vol. 72, No. 14 (2023) 148501

CENE
Va=f3(V). (23)
H (23) ACA (11) A 15 B n v il (a] RS
X B RA. EE (13)—(17) L, Al
p i DCRIVARE R % 378 B A 2. e &A%
PFR L B R R R

Ei1(0,y) = f5(V), 0<y< Dy,
Er (0,y) = fa(V), Dy<y<Dp+Ln (24)
E3(0,y) = fe(V), Dp+La<y.

W3 2 h HAARSEBERA KRR (24), TR
SGT-MOSFET 7EA [F] HL e HL 3758 B 43 A5 (1) fiff
SR ME 9 FoR, I 505 BE R . TR
F il 50 V HLE T MR S5 SR A5 SRV G T,
MAE 113 V SRR, AT R A RS RCHR 75

#* 2 RBATHAESHIE

Table 2. Specific parameter values in expressions.
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Fig. 9. Comparison of electric field analysis results and simu-
lation results under different drain-source voltages.
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Abstract

Shielded gate trench metal-oxide-semiconductor field effect transistor (SGT-MOSFET) introduces a
longitudinal shielding gate connected to the source inside the body, which can assist in depleting the drift
region. Its principle of withstanding voltage is different from that of the vertical U-groove MOSFET
(VUMOSFET). The SGT-MOSFET will generate two electric field peaks inside the body, which will further
optimize the electric field strength distribution of the device and increase the breakdown voltage of the device.
Therefore, SGT-MOSFET has not only the advantages of low conduction loss of CCMOSFET, but also lower
switching loss. The effects of structural parameters such as the width of the mesa, the thickness of the field
oxygen, the depth of the trench and the doping concentration on the electric field strength distribution of SGT-
MOSFET are not independent of each other. The more the parameters, the more complex the correlation of
their effects on the electric field strength distribution is. In this paper, we take 110V SGT-MOSFET as a
research object. Through numerical simulation, theoretical analysis and analytical modeling, the principle of
withstanding voltage for different structures and the correlation between structural parameters and electric field
strength distribution are studied. The analytical model of the electric field related to various structural
parameters of the device is established, which provides a theoretical basis for the design of the device structure.
The analytical model of electric field under low current is modified by introducing avalanche carriers, so that
the modified analytical results can better match the simulation results. Through the modified electric field
analysis model, the field oxygen thicknessin an optimal electric field is 0.68 pm . Comparing with the product of
SGTMOSFET with 0.58 um field oxygen thickness, at the optimal field oxygen thickness of 0.68 pum, the on-
resistance of the device is reduced because the on-area of the device is increased; the electric field distribution is
more uniform, so the device breakdown voltage increases; the gate-source capacitance decreases and the gate-
drain capacitance is almost no change, so the gate-source charge decreases and the gate-drain charge is almost
no change, while the total gate charge decreases. As a result, the optimal value parameter FOM; of the device is
increased by 18.9%, and the optimal value parameter FOM, is reduced by 8.5%. Therefore, the static and
dynamic characteristics of the device are significantly promoted, and the performance of the corresponding

products is greatly improved.
Keywords: SGT-MOSFET, electric field analytical model, avalanche carrier, field oxygen thickness
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