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Fig. 1. Schematic diagram of hybrid shielding ‘deep well” design: (a) Schematic diagram of design of zero field chamber (ZFC) and

distribution of magnetic field elements; (b) schematic diagram of magnetic field simulation result based on prototype design.
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Fig. 2. Three-dimensional FEM model of ZFC.
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Table 1. Physical properties definition of different ma-
terials in FEM model.
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Fig. 3. XZ-plane cross-sectional view of magnetic field dis-
tribution of ZFC.
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Fig. 4. Magnetic field distribution and polarization evolution in direction of beam path in ZFC under optimal conditions: (a) Mag-

netic field distribution of ZFC along the neutron beam direction; (b) polarization evolution along neutron beam direction inside the

ZFC.
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Fig. 5. Influence of height conditions on shielding performance of ZFC: (a) Comparison of magnetic field distributions along neutron

beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with height.
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beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with radius.
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Fig. 8. Influence of arm length conditions on shielding performance of ZFC: (a) Comparison of magnetic field distributions along

neutron beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with arm length.
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Abstract

Polarized neutron scattering, as one of the experimental techniques of neutron scattering, is a powerful tool
for exploring the microstructure of matter. In polarized neutron scattering experiments, magnetic field
maintains and guides the neutron polarization, and determines the sample magnetic environment. For complex
magnetic sample, it is often necessary to apply zero-field environment at the sample position, so that general
polarization analysis becomes feasible. To achieve effective zero-field environment for polarized neutron
experiment, carefully designed magnetic field is required.

In this work, we demonstrate a zero-field sample chamber designed for polarized neutron experiment by
utilizing both permalloy material and high-T superconducting films. This design adopts a simple and low-
maintenance ‘deep-well’ shape to achieve effective shielding. The study uses finite element simulation method to
analyze the effect of dimensions on the magnetic field shielding performance of the device of the model,
including height, arm length, opening radius, and superconductor distance. At optimal dimensions, the designed
zero field chamber achieves an internal magnetic field integral of 0.67 G-cm along the neutron path under the
geomagnetic field condition. The maximum neutron depolarization for 0.4 nm neutrons is 0.76%, which
sufficient for general polarization analysis application. The finite element method simulation results are
examined by neutron Bloch equation dynamics simulations and in-lab measurement . Based on the established
effective zero-field shielding design, we further discuss the relationship between magnetic field shielding and the
dimensions of the device. The application of the device to spectrometers and the future improvement in the

device structure are also discussed.
Keywords: magnetic field shielding, polarized neutron technique, Larmor precession, finite element analysis
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