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光波导模式分析是先进波导器件和光波线路设计中的一项基本任务. 如何处理电磁异质界面和吸收边

界问题是光波导高效数值分析面对的两大困难. 现有高阶精度有限差分模式分析方法均未考虑吸收边界条

件, 导致漏模和辐射模难以精确模拟. 本文基于浸入界面方法和完美匹配层吸收边界条件, 提出一种具有二

阶和四阶精度的有限差分方法. 利用该方法对单界面等离子波导、平面对称波导和一维光子晶体波导进行模

式分析, 数值实验结果表明二阶和四阶算法对于导模、漏模和辐射模的收敛速度均与期望的阶数相符, 二阶

算法约在归一化步长   时提供有效折射率相对误差约为   的极限精度, 四阶算法约在归一化步长  

时提供有效折射率相对误差约为   的极限精度. 对一维光子晶体波导中导模和包层模场分布进行的研究

表明, 界面处横电模式的场及其一阶导数的连续, 横磁模式的场的连续及其一阶导数的不连续, 均可以被精

确解析. 本文提出的方法只需利用折射率的值而不依赖于模场的特定函数表示, 即可用于计算任意折射率剖

面下的任意模式, 为阶跃折射率平面波导模式分析提供一种简单而高效的工具.
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 1   引　言

电磁异质结构对于集成光学和光纤光学中多

数光子器件功能的实现至关重要. 在先进波导器件

和光波线路的设计中, 光波导模式的全矢量求解是

一项基本任务 [1−3]. 在各种数值方法中, 有限差分

法 (finite-difference method, FDM)易于实现而被

普遍用于波导模式分析 [4,5]. 有限差分法一般通过

求解稀疏矩阵本征值问题可同时高效地确定多个

模式的传播常数以及模场. 波导存在折射率跳变的

界面, 导致模场及其导数一般是不连续的. 标准有

限差分法基于微分方程的解及其导数的连续性, 直

接应用于界面问题时, 会降低差分格式的精度. 针

对界面问题的高精度有限差分求解, LeVeque和

Li[6,7] 提出了浸入界面方法 (immersed interface me-

thod, IIM), 该方法可以系统地生成所需精度的差

分格式 . Horikis和 Kath[8−10] 将 IIM应用于光波

导模式分析, 分别发展了具有任意截面形状二维波

导的二阶精度算法以及光纤的二阶和四阶精度算

法. 在 IIM提出之前, Stern[11] 利用泰勒级数展开

模场然后匹配界面边界条件的方法, 来改进阶跃折

射率光波导模式分析的有限差分法. 模场展开和匹

配边界条件也是 IIM的两个基本步骤, IIM和 Stern

方法仅在差分格式的系数修正如何表示方面存在

微小差异, IIM将系数修正表示为矩阵方程的解,

Stern方法直接给出系数修正的解析表达式 . 在

Stern工作的基础上, 研究者经过二三十年的努力,

最终开发出了光波导的全矢量任意阶精度模式求

解器 [12−18]. 高阶格式提供更快的收敛速度, 极大降

低计算资源需求, 提高计算精度. 然而在现有波导

模式分析的高阶方法中, 均未考虑吸收边界条件,
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需要设置较大的计算区域以令导模的倏逝场衰减

至可用硬壁截断, 而漏模则难以精确模拟.

本文针对阶跃折射率平面波导模式的全矢量

求解, 采用 IIM和完美匹配层 (perfectly matched

layer, PML)[19,20] 吸收边界条件发展二阶和四阶精

度的有限差分法, 该方法对导模、漏模和辐射模均

能高效模拟. 本文的组织结构为: 第 2节列出发展

算法所需的解析方程; 第 3节详细推导二阶精度有

限差分格式, 四阶精度格式的推导与二阶精度情形

类似, 主要结果罗列在附录中; 第 4节通过多种典

型平面波导中各类模式的模拟, 验证算法的有效性;

第 5节给出结论.

 2   基本方程

(Ey,Hz,Hx)

(Hy, Ez, Ex) e−iωt ∂/∂y = 0

考虑如图 1所示的多层平行平面系统, 每层填

充各向同性介质. 平行平面系统的模式分为横电

(transverse electric, TE)和横磁 (transverse mag-

netic, TM)偏振, 非零场分量分别为  

和  . 取时谐因子为  , 并令  ,

TE偏振满足的场方程为 

∂Ey

∂z
= −iωµHx, (1)

 

∂Ey

∂x
= iωµHz, (2)

  (
∂2

∂z2
+

∂2

∂x2
+ ω2εµ

)
Ey = 0. (3)

Ey Hz边界条件为   和   在界面处连续. TE和 TM偏

振有对偶关系, 二者满足的场方程和边界条件在

变换 

E → H, H → E, ε → −µ, µ → −ε (4)

下均互换. 因此, 可以先求解 TE偏振, TM偏振的

相应结果直接由对偶关系获得.

eiβz Ey → E

iη0Hz → H k0x → x̄ η0 =
√
µ0/ε0

k0 = ω
√
ε0µ0

令导波模式的传播因子为  , 简记  ,

 和   , 其中   为真空

波阻抗、  为真空波数, (2)式和 (3)式

归一化为
 

∂E

∂x̄
= µrH, (5)

 

∂2E

∂x̄2
+ n2E = n2

effE, (6)

n =
√
εrµr εr µr

neff = β/k0

其中   为介质的折射率,    和   分别为相

对介电常数和相对磁导率,   为模式的有

效折射率. 边界条件为 E 和 H 在界面处连续, 导波

模式的有效折射率及电场分布由 (6)式描述的本

征问题解出.

x̄ = k0x = 2πx/λ

值得指出的是, 经典电磁学中没有长度量纲的

基本常数, 麦克斯韦方程满足缩放不变性 [21]. 这种

缩放不变性在本问题中表现为, (5)式和 (6)式中

的空间坐标 x 和电磁波长 l 均可收缩入归一化坐

标  . 在将空间坐标归一化后, 计算

结果对于波导结构和波长满足相同比例关系的所

有情形均适用.

 3   算　法

x̄i = ih

对于给定的平面波导结构, 选取包含所有界面

的计算区域, 并用 N 个等间隔的格点将其离散, 电

场和磁场位于相同的格点, 如图 2所示, 其中竖线

表示界面. 记归一化空间步长为 h, 格点 i 的归一

化坐标为  . 对于一般的第 i 个格点, 用三点

格式
 

C−1Ei−1 + C0Ei + C+1Ei+1 = n2
effEi (7)

近似波动方程 (6).

 

  … 






图 1    平面波导示意图及坐标系放置

Fig. 1. Depiction  of  a  planar  waveguide  and  layout  of  the

coordinate system. 
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图 2    计算区域离散

Fig. 2. Discretization of the computational domain. 
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 3.1    常规格点

i− 1 i+ 1

∂2/∂x̄2

若格点 i 及其邻近的两个格点   及   均

在同一介质层内 , 则 i 为常规格点 , 对二阶导数

 取标准的中心差分格式近似将获得二阶精

度, 相应的差分方程 (7)的系数为 

C−1 =
1

h2
, C0 = n2 − 2

h2
, C+1 =

1

h2
. (8)

 3.2    非常规格点

j∗

j∗ + 1

j∗ j∗ + 1

C±1,0

对于如图 2所示的某一界面 a 两侧的格点  

和  , 三点格式跨越界面, 由于 E 的一阶导数

不连续, 若依然采用 (8)式作为差分方程 (7)的系

数, 则全局精度一般降为零阶. 格点   和   称

为非常规格点, 相应的系数  需要修正以获得

全局的二阶精度.

C±1,0

[f ] = 0 f− =

f+ − +

采用 IIM获得非常规格点处的修正系数  ,

需要 E 及其一阶和二阶导数在界面处的跳跃条件.

引入记号  表示函数 f 在界面处连续, 即 

 , 其中“  ”和“  ”分别表示界面左侧和右侧. 边

界条件直接给出 E 的跳跃条件: 

[E] = 0. (9)

∂E/∂x̄由 H 的边界条件及 (5)式导出  的跳跃条件:  [
1

µr

∂E

∂x̄

]
= 0. (10)

∂2E/∂x̄2由 E 的边界条件及 (6)式导出   的跳跃

条件:  [
∂2E

∂x̄2
+ n2E

]
= 0. (11)

Ej∗−1 Ej∗ Ej∗+1 x̄α = αh将   ,    和   关于   泰勒展

开得 

Ej∗−1 = E− + (x̄j∗−1 − x̄α)
∂E−

∂x̄

+
1

2
(x̄j∗−1 − x̄α)

2 ∂2E−

∂x̄2
+O

(
h3

)
, (12)

 

Ej∗ = E− + (x̄j∗ − x̄α)
∂E−

∂x̄

+
1

2
(x̄j∗ − x̄α)

2 ∂2E−

∂x̄2
+O

(
h3

)
, (13)

 

Ej∗+1 = E+ + (x̄j∗+1 − x̄α)
∂E+

∂x̄

+
1

2
(x̄j∗+1 − x̄α)

2 ∂2E+

∂x̄2
+O

(
h3

)
. (14)

利用跳跃条件 (9)—(11)式, 将 (14)式改写为 

Ej∗+1 = δ+− (x̄j∗+1)E
− + µ+− (x̄j∗+1 − x̄α)

∂E−

∂x̄

+
1

2
(x̄j∗+1 − x̄α)

2 ∂2E−

∂x̄2
+O

(
h3

)
, (15)

其中 

δ+− (x̄) = 1 +
1

2
(x̄− x̄α)

2
n+−, (16)

 

n+− =
(
n−)2 − (

n+
)2

, (17)
 

µ+− =
µ+
r

µ−
r
. (18)

将波动方程 (6)应用至界面左侧得 

∂2E−

∂x̄2
+
(
n−)2 E− = n2

effE
−. (19)

j∗在格点  , 差分方程 (7)的局域截断误差估计为 

T = C−1Ej∗−1+C0Ej∗+C+1Ej∗+1−n2
effE

−+O (h) .
(20)

O (h)

将 (12)式、(13)式、(15)式和 (19)式代入 (20)式,

并令 (20)式等号右边  前的部分为零, 得到   1 1 δ+− (x̄j∗+1)

x̄j∗−1 − x̄α x̄j∗ − x̄α (x̄j∗+1 − x̄α)µ
+−

(x̄j∗−1 − x̄α)
2

(x̄j∗ − x̄α)
2

(x̄j∗+1 − x̄α)
2



×

C−1

C0

C+1

 =

(n−)
2

0

2

 ,
(21)

C±1,0 j∗

T = O (h)

从中求得的  使得格点  处的局域截断误差为

 , 即局域一阶精度. 由于界面比计算区域

低一维, 非常规格点具有局域一阶精度即可以保证

算法的全局二阶精度 [6]. 引入记号 

V (x̄) =

 1

x̄− x̄α

(x̄− x̄α)
2

 , C =

C−1

C0

C+1

 , b (n) =

n2

0

2

 ,

(22)

将 (21)式改写为紧凑形式  [
V (x̄j∗−1) ,V (x̄j∗) , diag

([
δ+− (x̄j∗+1) , µ

+−, 1
])

× V (x̄j∗+1)
]
C = b

(
n−) . (23)

j∗ + 1

C±1,0

类似地, 可以求得非常规格点  处的修正

系数  满足的方程:  [
diag

([
δ−+ (x̄j∗) , µ

−+, 1
])

V (x̄j∗) ,V (x̄j∗+1) ,

V (x̄j∗+2)
]
C = b

(
n+

)
, (24)
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δ+− µ+−

+ + δ−+ µ−+

将   和   的定义式 (16)—(18)式中所有上标

“–”替换为“  ”、“  ” 替换为“–”得到  和  .

在上述非常规格点差分格式系数修正的推导

中, 未限制电磁参数是否为实数或复数 (介质可具

有增益或损耗), 亦未限制其在界面两侧的跳跃量.

因此对于任意电磁参数剖面的平面波导, 本文描述

的方法均适用.

 3.3    吸收边界

波导的第一层和最后一层为开放介质层, 需要

做电磁波的吸收处理以降低计算区域截断带来的

误差. PML是目前计算电磁学中较为普遍采用的

吸收边界条件. Berenger[19] 最初通过引入非物理

分裂场的方式实现 PML, 而利用麦克斯韦方程在

复平面上的解析延拓性质, 通过复坐标拖拽实现

PML的等价方式 [20] 在数学上更加优美且易于扩

展至其他应用场景.

x̄ → x̃ (x̄)

使用 PML吸收边界, 在吸收层内做复坐标拖

拽  , 波动方程 (6)变为 

∂2E

∂x̃2
+ n2E = n2

effE, (25)

x̃ x̄

x̃

其中  为  的复函数, 具体函数形式由吸波需求决

定,   的实部用于吸收倏逝波, 虚部用于吸收行波.

可以推得 

∂2

∂x̃2
=

1

χ̃2

∂2

∂x̄2
− γ̃

χ̃3

∂

∂x̄
, (26)

χ̃ = dx̃/dx̄ γ̃ = dχ̃/dx̄其中  ,   . 将 (26)式代入 (25)式

并取标准的中心差分格式近似, 得 PML中差分方

程 (7)的系数为 

C−1 =
1

χ̃2h

(
1

h
+

γ̃

2χ̃

)
, C0 = n2 − 2

χ̃2h2
,

C+1 =
1

χ̃2h

(
1

h
− γ̃

2χ̃

)
. (27)

E = 0 N ×N

电磁波被有效吸收后, 在第一个格点和最后一个格

点外应用硬壁条件  , 最终得到  的三对

角矩阵本征值问题, 利用稀疏矩阵技术可以高效地

求得期望模式的有效折射率和电场分布.

 3.4    高阶精度和 TM 偏振

算法可以自然地扩展至高阶精度, 附录给出了

四阶精度的相应公式. 对 TE偏振的算法做对偶变

换 ((4)式), 即得 TM偏振的相应结果.

 4   算　例

k0 = 2π/λ

通过典型平面波导, 如单界面等离子波导、对

称波导和一维光子晶体波导的模式分析, 验证算法

的有效性. 需要指出的是, 本节算例中涉及的坐

标、厚度和步长均为相应量乘以   归一化

后的数值. 简单起见, 仅考虑模式在最外层主要表

现为倏逝波的情形. 如图 3所示, PML吸收边界可

通过如下的实坐标拖拽实现: 

x̃ (x̄) = x̄+ (x̄e − x̄s − δ)

(
x̄− x̄s

δ

)m

, (28)

x̄s

x̄e

4 x̄e

其中  为拖拽起点, 可取为最外层第一个常规格点

所在位置;   描述拖拽程度, d 为吸收层厚度; m 需

不小于格式精度, 统一取为  .   由下式设定: 

x̄e = x̄α ± logαPML

ℜ
(√

n2
eff,PML − εrµr

) , (29)

± +

x̄α εr µr

αPML

10−8 neff,PML

ℜ

1.55 μm εAu =

−104.2 + 3.7i εair = 1 εSi = 12.25 εSiO2 = 1.96

其中“   ”的“   ”和“–”分别对应左侧和右侧最外

层,   为相应的物理界面位置,   和  为层中电磁

参数;    为坐标拖拽后最外侧场相对界面处场

的比值, 统一取为  ;   为待求模式有效折

射率的估计值, 或者为使得所有期望模式有效吸收

的数值, 例如取为有效折射率的最小估计值;   表

示求复数的实部, 用于处理漏模和辐射模. 算例采

用通信波长  处典型电磁材料的参数, 如 

 ,    ,    ,    ,

材料的相对磁导率均取为 1.

 
 

PML


0

1

s





e


 
~

1

0

=PML

 ~ e-

2eff−rr-

图 3    PML吸收边界条件设置示意图

Fig. 3. Schematic  diagram of  the  setup of  PML absorption

boundary conditions.
 

金属和介质构成的单界面表面等离子波导中,

TM模式的有效折射率可由解析式给出: 

neff =

√
εdεm

εd + εm
. (30)
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neff =

1.00482710586 + 0.00017264861i
nAu = 0.18 + 10.21i

对于金属为金、介质为空气的情形, 精确解为 

 . 该波导中金属层

的折射率为   , 其含有较大的虚

部, 且与空气层的折射率差异极大. 三层平面对称

波导中, TE模式的有效折射率由解析的特征方程  (
µr2

µr1

α1

α2
− µr1

µr2

α2

α1

)
sin (α1d) = 2 cos (α1d) (31)

α1 =
√
n2
1 − n2

eff α2 =
√
n2
eff − n2

2 1

2

d = 1

neff,1 = 2.92535519956

neff,2 = 1.05265908179

定出, 其中  ,   ,   和

 分别代表芯层和包层; d 为归一化芯层厚度. 对于

芯层为硅, 包层为空气,    的情形, 前两个模

式有效折射率的精确解为  和

 .

图 4给出有效折射率的相对误差 

RE =
|neff,numerical − neff,analytical|

|neff,analytical|
(32)

1 neff,PML = 1.004

neff,PML = 1.05

3.40

h = 10−4

RE = 10−9

h = 10−3 RE = 10−10

(5− 3)/3 ≈
h = 9.3750× 10−4 TE1

RE = 6.7717× 10−7 0.181

RE = 4.1112× 10−11 0.244

35

与计算步长 h 的关系, 其中所有材料层的归一化厚

度均为  , 单界面波导的  , 对称波导

的  . 作为对比, 图中的虚线为理想的

二阶和四阶收敛曲线. 可以看出, 对于三个模式,

二阶和四阶算法的收敛速度均与期望的阶数相符.

计算误差来源包含舍入误差和截断误差. 舍入误差

仅与计算机硬件 (本文计算在 CPU主频   GHz

和双精度下执行)和计算操作次数有关, 步长越小

则操作次数越多, 误差累积越大. 对于稳定的有限

差分算法, 截断误差随步长减小而减小. 在大步长

和小步长区间, 计算误差分别由截断误差和舍入误

差主导. 两种误差相等的步长即对应最优步长, 计

算误差降为极限值 [22]. 二阶算法约在步长 

时提供约为  的极限精度; 四阶算法约在

步长  时提供约为   的极限精度;

进一步减小步长将使舍入误差超过模型截断误差.

对于给定的步长, 四阶方法相对二阶方法在数量级

上降低误差, 而计算耗时至多仅增加约 

67%. 例如,    时,    模式在二阶

方法下  , 计算耗时   s; 在四

阶方法下   , 计算耗时    s,

计算耗时增加约  %.

常规有限差分法在处理界面问题时通常使用

参数平滑或者平均方法. 对于椭圆微分方程界面问

题, 不连续系数的调和平均方法比平滑方法更为精

确, 然而使用调和平均的有限差分法仅对满足特定

条件的一维椭圆界面问题提供二阶精度 [23]. 图 5

TE1

TMs TE1

TMs

给出电磁参数未做平均处理和施加调和平均处理

两种条件下, 对称波导中  模式和单界面波导中

 模式的收敛曲线.   模式的收敛速度在两种

处理下无论对于二阶还是四阶格式均降为一阶, 未

做平均处理时收敛曲线抖动剧烈, 调和平均处理后

收敛曲线趋于平稳, 但误差增加约 1个数量级. 对

于  模式, 两种处理条件下二阶和四阶格式的精

度均降为零阶, 且误差水平基本一致, 其中调和平

均处理下的收敛曲线未在图 5中给出.

 
 

R
E

2nd-non, TE1

4th-non, TE1

2nd-avg, TE1

4th-avg, TE1

2nd-non, TMs

4th-non, TMs

10-2

10-3

10-4

10-5

10-6

10-7

10-8

()

10-3 10-2



图 5    收敛曲线, 电磁参数未做处理 (-non)和施加调和平

均处理 (-avg)

Fig. 5. Convergence curves:  non-averaging  (-non)  and   har-

monic averaging (-avg) for electromagnetic parameters.
 

图 5结果可解释如下. 对于 TE模式, 三点式

((7)式)仅在 (9)—(11)式给出的电场跳跃条件全

部满足的情形下提供二阶精度收敛. 在介质非磁

时, 电磁参数未做处理使电场及其一阶导数的跳跃

条件满足, 而二阶导数跳跃条件不满足, 因而给出

一阶收敛速度. 此时, 五点式 ((A1)式)亦仅给出

 

R
E

2nd, TE1

4th, TE1

2nd, TE2

4th, TE2

2nd, TMs

4th, TMs
10-3

10-4

10-5

10-6

10-7

10-8

10-9

10-10

(2)

(4)

10-4 10-3 10-2



TMs TE1, 2图  4    收敛曲线 , 单界面波导 (  )和对称波导 (  )

模式

TMs TE1, 2

Fig. 4. Convergence curves: Modes of single interface wave-

guide (  ) and symmetric waveguide (  ).
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一阶精度. 电磁参数调和平均处理后, 尽管收敛曲

线的平稳性得到改善, 但由于电场一阶导数的跳跃

条件不再满足, 致使误差上升. 对于 TM模式, 磁

场的一阶和二阶导数的跳跃条件在电磁参数未做

处理下均不满足, 三点式 ((7)式)和五点式 ((A1)式)

只能给出零阶精度. 本文利用的 IIM方法精确匹

配所需的跳跃条件, 对 TE和 TM模式都能提供期

望的收敛阶.

A(LH)MC(HL)MA

εC = 4

M = 10 wC = 5 wL, H

考虑更为复杂, 解析方法难于处理的一维光子

晶体波导. 取波导堆叠为   , 其中

低折射率层 L为二氧化硅, 高折射率层 H为硅, 芯

层 C的介电常数  , 周围介质 A为空气. 算例

取   , 归一化层宽   ,    由 1/4波长

堆叠条件给出: 

wL =
π

2
√
εC − εL

, wH =
π

2
√
εH − εC

. (33)

定义当前步长 h 下有效折射率的相对误差为 

RE =

∣∣neff,h − neff,h−1

∣∣∣∣neff,h−1

∣∣ , (34)

h−1 wA = 1

neff, PML = 1.5

23

h = 10−3

RE = 10−10

其中   为小于 h 的临近步长 . 计算取   ,

 , 有效折射率的相对误差与步长的关

系如图 6 所示. 算法对包含  层介质的一维光子晶

体波导同样有效, 四阶格式同样约在步长 

时给出约为  的精度.

  

R
E

2nd, TE1

4th, TE1

2nd, TM2

4th, TM2

2nd, TEc

4th, TEc

10-4

10-5

10-6

10-7

10-8

10-9

10-10

(2)

(4)

10-3 10-2



TEc图 6    收敛曲线: 一维光子晶体波导模式 (  为包层模式)

TEc
Fig. 6. Convergence  curves:  Modes  of  one-dimensional

photonic crystal waveguide (   is cladding mode).
 

M = 3

h = 1.688× 10−2

为了清楚地展示模场分布, 令  . 图 7给

出了 3个模式在对称轴左侧的场分布, 其中取了二

阶算法 , 步长   , 其他计算参数不

变. 由图可见, 界面处 TE模式的场及其一阶导数

的连续, TM模式的场的连续及其一阶导数的不连

续, 均可以被精确解析.

 5   结　论

针对平面波导的高效模式分析问题, 本文基于

浸入界面方法和完美匹配层吸收边界条件, 提出一

种具有二阶和四阶精度的全矢量计算方法. 本方法

只需利用取样点上折射率的值而不依赖于模场的

特定函数展开形式, 对于任意折射率剖面下的任意

模式 (导模、漏模和辐射模)均能简单而高效求解.

算法不仅可进一步向高阶扩展, 且其技术框架亦可

应用于其他波动系统的数值模拟中界面问题和吸

收边界条件的处理.

 附　录

i

本附录罗列 TE偏振模式的四阶精度公式. 对于一般

的第  个格点, 用五点格式 

C−2Ei−2 + C−1Ei−1 + C0Ei + C+1Ei+1

+ C+2Ei+2 = n2
effEi (A1)

近似波动方程 (6).

电场 E 的三阶和四阶导数的跳跃条件为  [
1

µr

(
∂3E

∂x̄3
+ n2 ∂E

∂x̄

)]
= 0, (A2)

  [
∂4E

∂x̄4
+ 2n2 ∂

2E

∂x̄2
+ n4E

]
= 0. (A3)

引入中间函数 

ϕ+− (x̄) = δ+− (x̄) +
(x̄− x̄α)

4

24
n+−, (A4)

 

κ+− (x̄) = µ+−θ+− (x̄) , (A5)
 

θ+− (x̄) =
1

3

[
2 + δ+− (x̄)

]
, (A6)
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图 7    模场分布 : 一维光子晶体波导 , 竖直虚线标示界面

位置

Fig. 7. Distribution  of  modal  fields:  One  dimensional

photonic crystal waveguide, with dashed lines indicating the

positions of interfaces. 
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将 (22)式扩展为  

V (x̄) =



1

x̄− x̄α

(x̄− x̄α)
2

(x̄− x̄α)
3

(x̄− x̄α)
4


, C =



C−2

C−1

C0

C+1

C+2


, b (x̄, n) =



n2

(x̄− x̄α)n2

2 + (x̄− x̄α)
2 n2

6 (x̄− x̄α)

12 (x̄− x̄α)
2


, (A7)

j∗非常规格点  处, 浸没界面修正的差分方程系数满足  [
V

(
x̄j∗−2

)
,V

(
x̄j∗−1

)
,V

(
x̄j∗

)
, diag

([
ϕ+− (

x̄j∗+1

)
, κ+− (

x̄j∗+1

)
, θ+− (

x̄j∗+1

)
, µ+−, 1

])
V

(
x̄j∗+1

)
,

diag
([
ϕ+− (

x̄j∗+2

)
, κ+− (

x̄j∗+2

)
, θ+− (

x̄j∗+2

)
, µ+−, 1

])
V

(
x̄j∗+2

)]
C = b

(
x̄j∗ , n

−)
. (A8)

j∗ − 1非常规格点  处为  [
V

(
x̄j∗−3

)
,V

(
x̄j∗−2

)
,V

(
x̄j∗−1

)
,V

(
x̄j∗

)
,

diag
([
ϕ+− (

x̄j∗+1

)
, κ+− (

x̄j∗+1

)
, θ+− (

x̄j∗+1

)
, µ+−, 1

])
V

(
x̄j∗+1

)]
C = b

(
x̄j∗−1, n

−)
. (A9)

j∗ + 1非常规格点  处为  [
diag

([
ϕ−+

(
x̄j∗−1

)
, κ−+

(
x̄j∗−1

)
, θ−+

(
x̄j∗−1

)
, µ−+, 1

])
V

(
x̄j∗−1

)
,

diag
([
ϕ−+

(
x̄j∗

)
, κ−+

(
x̄j∗

)
, θ−+

(
x̄j∗

)
, µ−+, 1

])
V

(
x̄j∗

)
,V

(
x̄j∗+1

)
,V (x̄j∗+2),V (x̄j∗+3)

]
C=b(x̄j∗+1, n

+). (A10)

j∗ + 2非常规格点  处为  [
diag

([
ϕ−+

(
x̄j∗

)
, κ−+

(
x̄j∗

)
, θ−+

(
x̄j∗

)
, µ−+, 1

])
V

(
x̄j∗

)
,

V
(
x̄j∗+1

)
,V

(
x̄j∗+2

)
,V

(
x̄j∗+3

)
,V

(
x̄j∗+4

)]
C = b

(
x̄j∗+2, n

+
)
. (A11)

C利用 (A7)式定义的  将常规格点处的系数紧凑地表示为 

CT =
[−1, 16,−30, 16,−1]

12h2
+

[
0, 0, n2, 0, 0

]
, (A12)

PML中格点的系数为 

CT =
[−1, 16,−30, 16,−1]

12h2χ̃2
−

[1,−8, 0, 8,−1] γ̃

12hχ̃3
+

[
0, 0, n2, 0, 0

]
. (A13)
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Modal  analysis  of  optical  waveguides  is  a  basic  task  in  the  design  of  advanced  waveguide  devices  and

optical  circuits.  How  to  deal  with  the  problem  of  electromagnetic  heterogeneous  interface  and  absorption

boundary condition are two major difficulties in implementing efficient numerical analysis of optical waveguides.

Existing  high-order  accurate  finite-difference  modal  analysis  methods  do  not  take  into  consideration  the

absorption  boundary  problem,  which,  thus,  makes  it  difficult  to  accurately  simulate  leakage  and  radiation

modes. Based on the immersed interface method and perfectly matched layer absorption boundary condition, a

finite-difference  method  with  the  second-  and  fourth-order  accuracy  is  proposed  in  this  work.  By  using  this

method,  the  single-interface  plasmonic  waveguide  mode,  planar  symmetric  waveguide  mode,  and  one-

dimensional  photonic  crystal  waveguide  mode  are  analyzed.  Numerico-experimental  results  show  that  the

convergence  rate  of  the  second-  and  fourth-order  algorithm  are  consistent  with  the  anticipated  order  of  the

guided mode, leakage mode and radiation mode. The second-order algorithm provides an ultimate accuracy of

about      for  the  relative  error  of  effective  refractive  index,  when  the  normalized  step  size  is    .  The

fourth-order algorithm provides an ultimate accuracy of about    for the relative error of effective refractive

index,  when  the  normalized  step  size  is    .  Through  the  study  of  field  distribution  of  guided  mode  and

cladding  mode  in  a  one-dimensional  photonic  crystal  waveguide,  we  show  that  the  continuity  of  the  field  of

transverse electric mode and its first derivative across the interface, and the continuity of the field of transverse

magnetic  mode  and  the  discontinuity  of  its  first  derivative  across  interface,  can  be  analyzed  accurately.  The

method proposed in this paper can be used to calculate any mode for any refractive index profile, only by using

the value of refractive index, independent of the specific functional representation of modal fields. The method

provides a simple and efficient tool for implementing the modal analysis of step-index planar waveguides.
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