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Fig. 1. Depiction of a planar waveguide and layout of the

coordinate system.
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Abstract

Modal analysis of optical waveguides is a basic task in the design of advanced waveguide devices and
optical circuits. How to deal with the problem of electromagnetic heterogeneous interface and absorption
boundary condition are two major difficulties in implementing efficient numerical analysis of optical waveguides.
Existing high-order accurate finite-difference modal analysis methods do not take into consideration the
absorption boundary problem, which, thus, makes it difficult to accurately simulate leakage and radiation
modes. Based on the immersed interface method and perfectly matched layer absorption boundary condition, a
finite-difference method with the second- and fourth-order accuracy is proposed in this work. By using this
method, the single-interface plasmonic waveguide mode, planar symmetric waveguide mode, and one-
dimensional photonic crystal waveguide mode are analyzed. Numerico-experimental results show that the
convergence rate of the second- and fourth-order algorithm are consistent with the anticipated order of the
guided mode, leakage mode and radiation mode. The second-order algorithm provides an ultimate accuracy of
about 107° for the relative error of effective refractive index, when the normalized step size is 10~*. The
fourth-order algorithm provides an ultimate accuracy of about 107'° for the relative error of effective refractive
index, when the normalized step size is 107%. Through the study of field distribution of guided mode and
cladding mode in a one-dimensional photonic crystal waveguide, we show that the continuity of the field of
transverse electric mode and its first derivative across the interface, and the continuity of the field of transverse
magnetic mode and the discontinuity of its first derivative across interface, can be analyzed accurately. The
method proposed in this paper can be used to calculate any mode for any refractive index profile, only by using
the value of refractive index, independent of the specific functional representation of modal fields. The method

provides a simple and efficient tool for implementing the modal analysis of step-index planar waveguides.
Keywords: immersed interface method, perfectly matched layer, waveguide mode
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