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Fig. 1. (a) Asymmetric PM protocol model; (b) entangle-
ment-based PM protocol model.
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Abstract

The phase-matching protocol is a practical and promising protocol that can surpass the linear key
generation rate boundary. However, classical phase-matching quantum key distribution requires the channel
attenuation between communicating parties to be symmetric. In practice, channels used are often asymmetric,
owing to geographical reasons in a quantum key distribution network. To enhance the practicality of phase-
matching, this paper proposes an asymmetric phase-matching protocol based on the classical framework and
establishes a relevant mathematical simulation model to study the influence of channel asymmetry on its
performance. The simulation results show that channel asymmetry significantly affects the count rate, error
rate, gain, and quantum bit error rate (QBER), ultimately, system performance. As the channel attenuation
difference increases, the system performance decreases and the rate of decrease accelerates. Key generation
becomes impossible when the channel attenuation difference exceeds 4 dB. Although the decoy-state scheme
cannot change the system's tolerance to channel attenuation difference, when the channel attenuation difference
is large, the increasing of the number of decoy states significantly can improve system performance, with a
three-decoy-state phase-matching protocol outperforming a two-decoy-state protocol. Considering the limited
data length, the system performance is improved as the data length increases, and the tolerance to channel
attenuation differences gradually increases. When the data length exceeds 10'?2, this improvement does not
continue any more. The system cannot break through the boundary of linear key generation rate when the
channel attenuation difference is 2 dB and the data length is less than 10'2. Comparing with symmetric
channels, the system performance improvement is very significant under asymmetric channel conditions as the
data length increases.

Keywords: quantum key distribution, phase matching, asymmetric channel, channel attenuation difference
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