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量子 Fisher信息给出参数估计的最优精度极限, 在量子度量学中有重要的应用. 近年来, 在量子系统中

实现非厄米哈密顿量的理论与实验研究受到广泛关注. 本文研究基于非厄米哈密顿量本征态的参数估计, 给

出其中单参数与两参数估计的量子 Fisher信息及其量子 Cramér-Rao下界, 计算与分析非互易、具有增益-耗

散的 Su-Schrieffer-Heeger模型 , 非厄米量子 Ising链、拓扑陈绝缘体模型和二能级系统中动量及外场参数估

计的量子 Fisher信息. 结果表明: 在这几个非厄米模型中, 对于单参数估计, 量子 Fisher信息在能隙闭合区域

和例外点附近显著增大, 从而提高参数估计的精度极限; 对于两参数估计, 量子 Fisher信息矩阵的行列式在

能隙闭合和例外点附近同样明显增大, 拓扑区域比平庸区域的整体评估精度更高, 且由陈数确定两参数估计

误差的拓扑下界.
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1   引　言

1969年, Helstrom[1] 提出量子系统中未知参

数的测量精度受不确定性原理的影响, 确定了基于

量子参数估计的量子度量学的理论基础. 在量子参

数估计理论中, 从给定量子态中提取未知参数的最

小误差由量子 Fisher信息描述, 最佳测量精度满足

所谓的量子 Cramér-Rao下界 (quantum Cramér-

Rao bound, QCRB)[2−5]. 因此, 如何增大量子Fisher

信息从而提高未知参数的估计精度是量子度量学

领域的一个重要问题. 研究发现, 可以通过量子

Fisher信息与量子几何的内在联系, 特别是刻画参

量空间中两量子态间距的量子度规 [6−11], 寻找最优

化的测量轨迹和评估策略 [12−15]. 利用量子系统特

有的量子纠缠性质, 用一个初态为纠缠态的探针提

取系统的参数信息 , 也可以提高量子态的量子

Fisher信息 [16−18]. 在具有临界性质的物理系统, 当

系统靠近临界点时, 物理参数的微小变化会导致量

子态性质的明显响应, 因此可以利用这种临界增强

效应来提高参数评估精度 [19−21]. 此外, 近期研究表

明选取合适初态以及权衡不同参数的测量误差可

以提高参数估计的精度 [22,23].

另一方面, 近年来在经典或量子系统中实现非

厄米有效哈密顿量的实验技术蓬勃发展 [24−28], 引

发研究人员对非厄米物理及其应用的广泛兴趣. 理

论与实验研究表明非厄米系统具有许多重要的物

理性质 [29,30]. 例如 , 在非厄米系统特有的例外点

(exceptional point, EP)附近, 本征态能量发生实

复或虚复转变, 此时系统对参数微扰有强烈的响

应 , 因此可以利用 EP点实现高精度传感 [31−33].

另外, 拓扑物态及其量子模拟 [34] 也从厄米系统推

广到非厄米系统 [35−44], 并涌现系列新奇非厄米拓

扑物理及其应用, 包括非厄米 Bloch能带 [38] 与非
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厄米趋肤效应 [39]、非厄米拓扑安德森局域化 [40−42]

等, 以及利用非厄米拓扑边缘态可以实现高精度的

量子传感 [43,44]. 因此, 基于量子 Fisher信息, 研究

非厄米哈密顿量中的参数估计及其与非厄米拓扑

的内在联系, 是当前量子精密测量与非厄米物理交

叉研究领域的一个重要课题.

本文研究非厄米哈密顿量本征态的量子参数

估计. 首先证明在定态条件下, 传统量子 Fisher信息

的表达式以及单参数估计和两参数估计的 QCRB

对于非厄米哈密顿量依然成立. 其次结合一维非互

易 Su-Schrieffer-Heeger (SSH)模型、具有增益-耗

散的 SSH模型, 以及一维非厄米量子 Ising链研究

单参数估计, 分别计算这 3个非厄米模型中量子

Fisher信息随动量或单个外场参数的变化. 结果表

明量子 Fisher信息在能隙闭合点和 EP点附近呈

现尖峰, 其动量空间积分也显著增大, 从而提高单

参数估计的精度. 最后研究二维非厄米拓扑陈绝缘

体模型和二能级系统中的两参数估计, 此时量子

Fisher信息矩阵的行列式及其动量空间积分在能

隙闭合和例外点附近也明显增大, 拓扑区域整体评

估精度大于平庸区域. 结合贝里曲率及其积分给出

的陈数, 进一步给出两参数估计误差的拓扑下界. 

2   非厄米系统中量子态的量子 Fisher
信息

|ψµ⟩

{
Πx|

∑
x
Πx =

I
}

I

Pµ(x) = Tr(ρµΠx)

ρµ = |ψµ⟩⟨ψµ|

∆µ

(∆µ)2 ⩾ 1/Fµ

Fµ = Tr(L2
µρµ) Lµ =

2(|∂µψµ⟩⟨ψµ|+ |ψµ⟩⟨∂µψµ|)
Fµ

考虑量子态  依赖待评估参数 μ, 通常采用

正定算符测量的方法进行参数估计. 具体过程是将

量子态投影到一组正定的完备基底 

 (  为单位算符), 使评估 μ转化为测量量子态在

一系列 x 方向上的概率分布  , 其

中密度矩阵   . 选择不同的正定算符

测量会得到不同的评估精度, 由测量值和实际值之

间的方差  刻画, 而方差的下界只由量子态的几

何性质确定 , 即 QCRB[2−5]:    , 其中

 是评估 μ的量子 Fisher信息,  

 是对称对数导数算符 .

对于厄米系统中的量子态,   的表达式可记为 [2]: 

Fµ = 4(⟨∂µψµ|∂µψµ⟩ − ⟨∂µψµ|ψµ⟩⟨ψµ|∂µψµ⟩). (1)

本质上, 评估一个参数的精度正比于参数发生微小

变化前后两量子态的“距离”[6], 即相邻两个量子态

的可分辨度 , 因此可以从几何的角度理解量子

ds(|ψµ⟩, |ψµ+dµ⟩) =

||Dµψµ⟩|dµ |Dµψµ⟩ = (1− |ψµ⟩⟨ψµ|)
d
dµ

|ψµ⟩

Fµ = 4||Dµψµ⟩|2 Fµ

|ψµ⟩ |ψµ+dµ⟩
Fµ

Fisher信息 . 定义一个线微元  

 , 其中   ,

其模方给出参量空间中量子态的量子度规 [6], 而

 等于量子度规的 4倍 . 因此 ,   

刻画相邻两个量子态  与  之间的可分辨

度, 即越大的  表示两量子态之间有越高的分辨

度, 意味着对未知参数 μ的估计精度越高.

Ĥ ̸= Ĥ† Ĥ|ψ(n)
µ ⟩ = En|ψ(n)

µ ⟩
En |ψ(n)

µ ⟩

⟨ψ(m)
µ |ψ(n)

µ ⟩ ̸= δmn

⟨ψ(n)
µ |ψ(n)

µ ⟩ = 1

|ψµ⟩ Â

(∆µ)2 =

(∆Â)2

|∂µ⟨Â⟩µ|2 B̂ = ∇µ

(∆B̂)2 = ⟨B̂†B̂⟩µ − ⟨B̂†⟩µ⟨B̂⟩µ = Fµ/4

(∆Â)2(∆B̂)2 ⩾
|⟨Â†B̂⟩µ − ⟨Â†⟩µ⟨B̂⟩µ|2

本文考虑定态情况下非厄米哈密顿量本征态

的量子 Fisher信息及其参数估计. 对于非厄米哈

密顿量  , 其本征方程为  ,

其中   是第 n 个本征态   的能量, 本征态之

间通常没有正交性, 即   . 在定态

情况下满足归一化条件  , 可证明其

量子 Fisher信息仍然满足方程 (1). 简单起见, 本

文以下省略本征态指标, 仍记非厄米哈密顿量本

征态为   . 对于可观测量算符   , 未知参数 μ
的测量方差由误差传递公式得到 , 即  

 . 定义非厄米导数算符  , 其不确

定度为   . 根

据非厄米算符的不确定性关系 [45]   

 , 可得:
 

(∆Â)2(∆B̂)2

⩾ ⟨ÂB̂⟩µ⟨B̂†Â⟩µ + ⟨Â⟩2µ⟨B̂†⟩µ⟨B̂⟩µ

− ⟨B̂†Â⟩µ⟨Â⟩µ⟨B̂⟩µ − ⟨ÂB̂⟩µ⟨Â⟩µ⟨B̂†⟩µ. (2)

|f⟩ = Â|ψµ⟩ − ⟨Â⟩µ|ψµ⟩ |g⟩ = B̂|ψµ⟩ −

⟨B̂⟩µ|ψµ⟩ ⟨B̂⟩µ = −⟨B̂†⟩µ

定 义   ,   

 , 利用  , 可得:
 

|⟨f |g⟩ − ⟨g|f⟩|2

= − ⟨B̂†Â⟩2µ − ⟨ÂB̂⟩2µ + 2⟨ÂB̂⟩µ⟨B̂†Â⟩µ

+ 4⟨Â⟩2µ⟨B̂†⟩µ⟨B̂⟩µ

− 4⟨B̂†Â⟩µ⟨Â⟩µ⟨B̂⟩µ − 4⟨ÂB̂⟩µ⟨Â⟩µ⟨B̂†⟩µ. (3)

比较 (2)式和 (3)式, 可得不等式: 

4(∆Â)2(∆B̂)2

⩾ |⟨f |g⟩ − ⟨g|f⟩|2+|⟨B̂†Â⟩µ+⟨ÂB̂⟩µ|2

⩾ |⟨B̂†Â⟩µ + ⟨ÂB̂⟩µ|2. (4)

|⟨B̂†Â⟩µ + ⟨ÂB̂⟩µ|2 = |∂µ⟨Â⟩µ|2 Fµ = 4(∆B̂)2

|ψµ⟩
Fµ (∆µ)2 ⩾

由  和  ,

可得到非厄米哈密顿量本征态   的量子 Fisher

信息   对应的 QCRB依然满足不等式:   
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(∆Â)2

4(∆Â)2(∆B̂)2
=

1

Fµ
Fµ

H†|ψL
n⟩ = E∗

n|ψL
n⟩

|ψL
n⟩

|ψµ⟩ |ψL
µ⟩

 , 其中  由 (1)式给定. 注意

这里只利用非厄米系统中特定本征态做参数评估,

不考虑多个本征态之间非正交性以及非幺正动力

学演化的影响. 值得指出的是, 以上推导过程对非

厄米哈密顿量以及本征态的具体形式没有要求.

对于满足本征方程  的归一化左本

征矢  , 量子 Fisher信息表达式及其 QCRB关

系式保持不变, 只需将 (1)式中的  替换成 

即可.

{µ, ν} 2× 2 Σµν

2× 2

Fµν Lµ,ν

∂µ(ν)ρ = (Lµ(ν)ρ+ ρLµ(ν))/2

Fµν

以上结论可推广到多参数评估情况. 以两参数

 为例, 评估误差为   的协方差矩阵   ,

相应的评估精度极限由   的量子 Fisher信息

矩阵  刻画. 相应的对称对数导数算符  
[1] 由

 定义 , 可证明非厄米

哈密顿量归一化本征态下,    的矩阵元表达式

为 (推导过程见附录 A)
 

Fµν = 4Re(⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩), (5)

|ψ⟩ µ, ν

Σµν

⩾ 1

Fµν
Σµν − 1

Fµν

det(Σµν) ⩾ det
(

1

Fµν

)
Fµν

Ωµν

det(Fµν) ⩾ 4Ω2
µν

与厄米情况一致 . 这里和后文相应两参数本征

态  都省略了下标  . 在无偏估计条件下, 非厄

米系统本征态的两参数估计的 QCRB仍为  

 , 即   是一个半正定矩阵 , 且

 . 此外 , 利用   和贝里曲

率   的关系 , 附录 A中进一步证明不等式 :

 , 从而可以给出非厄米系统的两

参数估计不确定度的拓扑下界, 具体例子将在下文

讨论.
 

3   基于非厄米系统的量子参数估计

本节研究几个典型的非厄米模型中量子态的

量子 Fisher信息及其参数估计. 3.1节讨论一维非

厄米模型中的单参数估计, 3.2节讨论二维非厄米

模型中的两参数估计.
 

3.1    单参数估计

t± δ

t′

首先考虑一维非互易 SSH模型 [39,46,47], 其原

胞内非互易跳跃强度为   , 原胞间跳跃强度为

 . 在周期边界条件下, 该模型的动量空间哈密顿

量为 [47]
 

HSSH-1(k)=

 0 t− δ+t′e−ik

t+δ+t′eik 0

 . (6)

t′ = 1令  为能量单位, 两能带为 

E±(k) = ±
√
1 + t2 − δ2 + 2t cos k − 2iδ sin k,

k ∈ [0, 2π] ∆E ≡
mink |E+(k)− E−(k)|

∆E = 0

其中准动量   , 则能隙可定义为  

 . 如图 1(a)所示, 该模型中能

隙闭合 (  )对应能带中出现 EP点以及拓

扑转变 [47].

|ψ−⟩
.
= |ψ⟩

|ψR⟩
µ = k Fk =

4(⟨∂kψ|∂kψ⟩ − ⟨∂kψ|ψ⟩⟨ψ|∂kψ⟩) δ = 0.2

t ⩾ 0 t = 0.8, 1.2 k = π

Fk

Fµ

Mµ =

∫ 2π

0

dkFµ µ = k Mk

Mk t = 0.8, 1.2

µ = δ Fδ

Mδ t = 0 t = 0.2 Mδ

t = 0 δ ⩾ 0

Mδ δ = 1

t = 0.2 δ = 0.8, 1.2 Mδ

µ = t

Mt δ = 0

δ = 0.2 Mt t = 1 t = 0.8, 1.2

(δ = 0)

|ψL⟩
|ψR⟩

考虑实部能量较小的归一化本征态 

(无特别说明时默认为右本征矢   ), 首先对参

数   进行评估 , 其量子 Fisher信息为  

 . 选取   而改

变   , 可以发现当   时, 在   处出

现 EP点, 对应本征态能量发生虚复转变. 在这两

处 EP点附近,    呈指数增长的趋势, 如图 1(b)

中的上图所示. 为表征  在整个动量空间的大小,

定义积分   . 对于   情况 ,   

随 t 的变化如图 1(b)下图中的实线所示. 可以看

出,    在   处出现峰值, 说明在能隙闭

合点附近对参数 k 的估计具有最高精度. 考虑评估

参数   , 量子 Fisher信息及其积分分别为  

和  . 图 1(c)实线给出  和  时  随参

数 d 的变化. 当   时, 在   的区域中只有一

个能隙闭合点, 对应  在  附近出现尖峰. 当

 时, 在   处能隙闭合, 则   出现

两个尖峰. 考虑评估参数   时, 图 1(d)中的实

线给出   随参数 t 的变化 . 类似地 , 当   和

 时,   分别在  和  的能隙闭

合点附近呈现峰值, 表明量子 Fisher信息在非厄

米和厄米  系统中的能隙闭合点附近都会指

数增大. 非厄米系统具有独特的 EP点, 其附近量

子 Fisher信息也会指数增大, 从而提供额外的提

高参数估计精度的策略. 在图 1(b)—(d)中, 进一

步数值验证了对于归一化左本征矢   , 其量子

Fisher信息和整体评估精度具有与右本征矢  

相同的特征. 原因在于当靠近能隙闭合点或 EP点

时, 无论对于左本征矢还是右本征矢, 系统性质都

会随参数的变化而显著变化. 图 1结果表明, 非厄

米系统中本征态在 EP点或能隙闭合点附近的量

子 Fisher信息显著增大, 从而可以提高未知参数

的估计精度.
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非互易 SSH模型在开边界和周期边界条件下

具有不同的能谱特征 [39], 因此进一步考虑开边界

系统中的参数估计. 实空间中 N 个原胞的非互易

SSH模型的哈密顿量为
 

HSSH-1 =

N∑
j=1

[(t− δ)a†jbj + (t+ δ)b†jaj ]

+

N−1∑
j=1

t′(a†j+1bj + H.c.)+Γ (a†1bN + b†Na1), (7)

a†j , b
†
j(aj , bj) A,B

Γ = 0

t′ = 1, δ = 2/3 N = 20 HSSH−1

t = ±
√
t′2 + δ2 ≈ ±1.20

其中  分别代表第 j 个原胞中  格点

的产生 (湮灭)算符, G 表示第一个和最后一个格

点之间的耦合参数, 当  时系统处于完全开边

界情况. 令  和  , 对角化 

可得开边界条件下本征能量 E 的实部与虚部随

t 的变化, 分别如图 2(a), (b)所示. 从图 2(a)可看出,

带隙间的零能模出现在   ,

意味着在这两处能隙关闭点发生拓扑相变 [39]. 从

t ≈ ±0.66

|ψmid⟩
|ψground⟩

Ft |ψmid⟩
t ≈ ±1.20

Ft Ft t = 0

Γ → 0

|ψground⟩
t ≈ ±0.66 Ft

Γ = 0

图 2(b)可以看出, 能谱在  时发生实复转

变, 则出现 EP点. 分别考虑利用中间能态  

和基态  计算评估参数 t 时的量子 Fisher信

息   , 结果如图 2(c)所示. 选择   进行评估,

当   时本征能量变为零, 与其他能级之间

的能隙闭合, 此时   出现峰值. 此外,    在  

附近也呈指数增大, 这是由两个 EP点在  时

合并于此处所导致, 如图 2(g)所示. 选择  

进行评估, 则   为其 EP点, 此时   呈指

数增大. 总而言之, 开边界非互易 SSH模型在不同

参数 t 下出现拓扑相变的能隙闭合点和实复转变

的 EP点, 分别对应中间能态和非中间能态 (如基

态)的量子 Fisher信息显著增大, 可提高参数评估

精度. 在  的开边界条件下, 能隙闭合点和 EP

的位置不依赖于 N, 因此上述结论与原胞数无关.

Ft Γ = 0.1, 0.6

进一步考虑边界耦合参数 G 对能谱和量子

Fisher信息   的影响 . 选取   , 相应本

征能谱的实部分别如图 2(d)和图 2(e)所示. 可以
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(b)

∆E δ = 0.2 |ψR⟩
Fk Mk |ψR⟩ Mδ

|ψR⟩ Mt |ψL⟩
t′ = 1 Fk Mµ

图  1    基于非互易 SSH模型的单参数估计　 (a)能隙   随 t 和 d 的变化 ; (b)    时利用右本征矢   评估 k 的量子

Fisher信息   随 k 和 t 的变化 (上图)及其积分   随 t 的变化 (下图实线); (c)利用   评估 d 时   随 d 的变化 (实线); (d)利

用   评估 t 时   随 t 的变化 (实线). 图 (b)—(d)中的数据点表示利用左本征矢   评估 k, t 或 d 时相应的数值结果 . 图中

 ,   和   做对数处理

∆E Fk

|ψR⟩ Mk |ψR⟩
δ = 0.2 Mδ |ψR⟩

Mt |ψR⟩
|ψL⟩ t′ = 1 Fk Mµ

Fig. 1. Single-parameter estimation based on the non-reciprocal SSH model: (a) Energy gap    as functions of t and d; (b)    by

the right eigenstate     as functions of k and t for estimating k (top) and the integration     by     as a function of t (solid

line in the bottom)with   ; (c) the integration    by using    (solid line) as a function of d for estimating d; (d) the in-

tegration     by using     (solid line) as a function of t for estimating t. The data points in panels (b)−(d) denote the corres-

ponding numerical results for estimating k, t or d by using the left eigenstate   .    is set and    and    are logarithmically

plotted in the picture.
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t = 0

|ψmid⟩

t = 0 Γ =

0.6 Ft t = 0

Γ = 0 t = 0 Ft t = 0

看出, 增大 G 对跳跃强度  附近的能谱影响比

较明显. 从图 2(f)进一步看出, 对于中间能态  ,

增大 G 除了移动能谱中 4个 EP点的位置, 还会使

得   处出现能隙闭合点. 当 G 较大时 (如  

 ),   会在  处出现峰值. 相反地, 如图 2(g)

所示, 随着 G 的减小, 能谱中心两侧的 EP相互靠

拢; 当   时合并于   处, 此时   在   附

近指数增大. 因此, 该非互易模型中边界条件的变

化可以通过能谱和量子 Fisher信息反映出来.

接下来考虑具有增益-耗散的非厄米 SSH模

型 [48,49], 其动量空间哈密顿量为
 

HSSH−2(k) =

 iγ t+ t′e−ik

t+ t′eik −iγ

 . (8)

t′ = 1令  , 两能带为 

E±(k) = ±
√
1 + t2 + 2t cos k − γ2,

∆E ∆E > 0

∆E = 0

|ψ−⟩
µ = k γ =

0.5 t = 0.3 t = 1.7

Fk

t = 1 k ≈ 0.84π, 1.16π

Fk Mk

能隙  随 t 和g 的变化如图 3(a)所示. 在 

和   区域, 本征态能量分别为实数和复数,

能隙闭合对应能带出现 EP点. 考虑本征态  评

估参数   , 主要结果如图 3(b)所示. 选取  

 , 当   和   时, 即图 3(a)中的实能量

区域, 量子 Fisher信息  随参数 k 的变化较为平

缓 . 当   时 , 复能谱中   两处有

EP点, 对应   在这两点附近呈现尖峰. 而且  

也反映了在具有 EP点的复能量区域, k 的整体估

计精度更高.

本节最后考虑一维非厄米量子 Ising模型 [50,51],

其近邻格点自旋耦合强度为 J, 外加横场为复数场
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图 2    原胞数   的非互易 SSH模型在不同边界耦合常数 G 下的单参数估计　(a)和 (b)分别是开边界情况   时本征能

量的实部与虚部随参数 t 的变化 ; (c)为开边界条件下利用中间能态   和基态   评估参数 t 的量子 Fisher信息   随

t 的变化, 图中 EP表示例外点, GP表示能隙闭合点; (d)和 (e)分别是   时本征能量实部随 t 的变化; (f)和 (g)为不同

边界耦合常数 G 下   随 t 的变化. 图中   ,   做对数处理

N = 20

Γ = 0 Ft |ψmid⟩ |ψground⟩
Γ = 0

Γ = 0.1, 0.6 Ft t′ = 1, δ = 2/3

Ft

Fig. 2. Single-parameter estimation based on the non-reciprocal SSH model with different boundary coupling coefficients G and the
unit cell of   : (a) The real part and (b) the imaginary part of the eigen-spectrum as functions of t under open boundary con-

dition with   ; (c)    as a function of t by the mid-spectrum eigenstate    and the ground state    for estimating t

with    .  Here EP and GP denote exceptional point and gapless point,  respectively;  (d) and (e) the real  part of  energy as a

function of t with   , respectively; (f) and (g)    as a function of t different values of G. In the figure,   ,

and    is logarithmically plotted.
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λ+ ih  (l 和 h 均为实数), 模型哈密顿量为
 

HIsing = −
∑

j
[Jσz

jσ
z
j+1 + (λ+ ih)σx

j ], (9)

σz
j σx

j其中  和  是第 j 个格点的泡利算符. 对此实空

间哈密顿量进行 Jordan-Wigner变换 [52] 和 Fourier

变换, 可得动量空间自由哈密顿量:
 

HIsing(k) =

 λ+ ih− Jcosk Jsink

Jsink −λ− ih+ Jcosk

 ,

(10)

k ∈ [0, π] J = 1其中准动量  . 令  , 本征能量为
 

E±(k) =±
√
1 + λ2 − h2 − 2λ cos k+2ih(λ− cos k).

∆E

E−

µ = λ h = 0.4, 0.8 Mλ =

能隙   随参数 l 和 h 变化如图 3(c)所示. 考虑

能量为  的本征态, 在参量空间 l-h 中可分为铁

磁态和顺磁态 [50,51], 其能量均为复数, 但两者之

间的转变伴随能隙的闭合. 类似地, 可利用此能

量闭合特性提高参数估计的精度. 如图 3(d)所示,

考虑参数  , 选取  , 计算积分 

∫ π

0

dkFλ Mλ λ ≈ 0.92

λ = 0.6

 随 l 的变化, 可见   分别在   和

 的能隙闭合点附近形成尖峰. 

3.2    两参数估计

对于两参数估计, 首先考虑二维非厄米陈绝缘

体模型 [38,53,54], 其动量空间哈密顿量为 

HChern(kx, ky) =(
t+ coskx + cosky sinkx − δ − isinky
sinkx + δ + isinky −t− coskx − cosky

)
, (11)

kx, ky ∈ [0, 2π]

E±(kx, ky) ∆E = minkx,ky
|E+(kx,

ky)− E−(kx, ky)| > 0

其中准动量   , d 是非厄米强度. 两能

带记为   , 当能隙  

 时, 该非厄米模型的能带拓

扑性质仍可用陈数 C 刻画 [38,54]: 

C =
1

2π

∫ 2π

0

∫ 2π

0

dkxdkyΩkxky
, (12)

Ωkxky
= i(⟨∂kx

ψ−|∂ky
ψ−⟩ − ⟨∂ky

ψ−|∂kx
ψ−⟩)

|ψ−⟩
其中  为

 在动量空间中的贝里曲率. 由 C 刻画的拓扑
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图 3    基于具有增益-耗散的 SSH模型 ((a), (b))和非厄米量子 Ising链 ((c), (d))的单参数估计　(a)能隙  随 t 和g 的变化, 有能隙

区域能谱为实, 无能隙区域能谱为复且存在 EP点; (b)  和  时评估 k 的量子 Fisher信息  随 k 的变化; (c)能

隙   随 l 和 h 的变化, 能隙关闭处为复能量的铁磁态和顺磁态的相边界; (d)评估 l 时的   随 l 的变化. 图中   和  

∆E

Fk γ = 0.5 t = {0.3, 1, 1.7} ∆E

Mλ t′ = 1 J = 1

Fig. 3. Single-parameter  estimation  based  on  the  gain-and-loss  SSH model  ((a),  (b))  and  the  non-Hermtian  quantum Ising  chain

((c),  (d)):  (a)  Energy gap     as  functions  of  t and g,  and the  gapped (gapless)  region contains  real  (complex)  eigen-spectrum
(with exceptional points); (b)     as a function of k for estimating k with     and    ; (c) energy gap     as

functions of l and h, and the gapless line denotes the phase boundary between the ferromagnetic and paramagnetic states with com-
plex energies; (d)    as a function of l for estimating l.    and    are set.
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C = 1 C = 0

∆E = 0 E−(kx, ky)

相图如图 4(a)所示, 在 d-t 参量平面中, 拓扑区域

(  )与平庸区域 (  )之间存在无能隙区

域   . 在无能隙区域内 , 能谱   存

在 EP点, 有利于提高参数估计的精度.

µ = kx, ν = ky

Fkxky

t = {1.4, 2, 2.6} δ = 0.2

Fkxky
t = 1.4

t = 2.6 C = 1 C = 0

det(Fkxky
)

t = 2 det(Fkxky
) ky = π kx ≈

0.94π, 1.06π

考虑两评估参数为   , 对应的量

子 Fisher信息矩阵  由方程 (5)给出. 图 4(b)

从上至下分别给出了   和   时,

 行列式在动量空间中的分布 . 当   和

 时, 分别对应有能隙的  和  情况,

 在整个动量空间中变化较为平缓 . 当

 时 ,    在两个 EP点   和  

 附近呈指数增大. 为表征整体评估精

度, 定义二维动量空间的积分 

Mµν=

∫ 2π

0

∫ 2π

0

det(Fµν)dkxdky.

µ = kx, ν = ky µ = t,

ν = δ Mµν Mkxky

图 4(c)给出了评估参数     和  

 两种情况下,   随 t 的变化. 可看出 

Mtδ 1.8 ≲ t ≲ 2.2和   都在   的无能隙区域取得更大

值, 表明此时两参数估计的整体精度更高. 此外, 相

较于平庸区域, 在拓扑区域的整体评估精度更高.

最后考虑具有等效增益-耗散项的非厄米二能

级系统 [26−28], 其哈密顿量表达式为
 

Hqubit(θ, φ) =

(
cosθ+r+iδ sinθe−iφ

sinθeiφ −cosθ − r − iδ

)
,

(13)

θ ∈ [0, π] φ ∈ [0, 2π]

C =
1

2π

∫ π

0

∫ 2π

0

dθdφΩθφ

r2+

δ2 < 1 C = 1 r2 + δ2 > 1

C = 0 µ = θ, ν = φ

Mθϕ

其中仰角  和方位角  给出归一化

量子态在 Bloch球面上的位置, r 代表沿 z 方向的

偏置场强度, d 是非厄米强度. 考虑实部能量较小

的本征态, 可定义陈数   刻

画系统的拓扑性质 [10,11]. 如图 5(a)所示 , 当  

 时   , 对应拓扑区域 , 而   对

应   的平庸区域. 考虑评估参数   ,

从  在 r-d 参量平面中的变化可看出, 相比平庸
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C = 1 C = 0

δ = 0.2 t = {1.4, 2, 2.6} {kx, ky} detFkxky

kx, ky δ = 0.2 {kx, ky} Mkxky {t, δ} Mtδ Mµν detFkxky

图 4    基于非厄米陈绝缘体模型的两参数估计　 (a)拓扑相图, 包括有能隙的拓扑和平庸区域, 分别对应陈数   和   ,

以及无能隙区域 ; (b)    和   (依次从上到下 )时评估   的量子 Fisher信息矩阵行列式   随

 的变化 ; (c)   时评估   的   和评估   的   随 t 的变化 . 图 (c)中   和图 (b)中间图  

做对数处理

C = 1 C = 0 detFkxky

kx ky {kx, ky} δ = 0.2 t = {1.4, 2, 2.6}
Mkxky {kx, ky} Mtδ {t, δ} δ = 0.2 Mµν detFkxky

Fig. 4. Two-parameter estimation based on the non-Hermtian Chern-insulator model:  (a) Topological  phase diagram with gapped

topological  (  ),  trivial  (  ),  and gapless  regions;  (b)  determinant of  quantum Fisher  information matrix     as

functions  of     and      for  estimating     with     and      (from top to bottom);  (c)  the integration

  for estimating    and    for estimating    as a function of t with   .    in panel (c) and  

in the middle of panels (b) are logarithmically plotted.
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Mθϕ r2 + δ2 = 1

区域, 拓扑区域的整体评估精度更高. 由于拓扑转

变伴随能隙关闭, 因此   的分布在  

附近出现尖峰.

|ψ−⟩ det(Fθφ) = 4Ω2
θφ此外   满足关系   , 从而给

出此非厄米两能级系统中两参数估计的拓扑下界.

为进一步讨论拓扑下界, 可定义量子 Fisher信息

矩阵行列式的积分:
 

V =
1

4π

∫ π

0

∫ 2π

0

dθdφ
√

det(Fθφ)

=
1

2π

∫ π

0

∫ 2π

0

dθdφ|Ωθφ|. (14)

Ωθφ

V = C = 1

Ωθφ 1 > V > C = 0

Mθϕ

结果如图 5(b)所示, 在拓扑区域中, 贝里曲率 

在整个 Bloch球面上同号, 可得   . 在平

庸区域,    不满足同号条件, 则   .

因此, 量子 Fisher信息矩阵行列式可表征非厄米

系统的拓扑转变. 类似  , V 的结果也表明在拓

扑区域中进行参数估计具有更高的精度, 相应的量

子 Fisher信息矩阵给出两参数估计误差的拓扑下

界为陈数 C.
 

4   结论与展望

本文基于量子估计理论, 首先证明了对于非厄

米哈密顿量归一化本征态, 量子 Fisher信息 (矩

阵)的表达式以及单参数估计和两参数估计的

QCRB关系依然成立. 在此基础上, 计算了一维非

互易、具有增益-耗散的 SSH模型和非厄米量子

Ising链中, 量子 Fisher信息随动量或单个外场参

数的变化. 结果表明, 基于这 3个非厄米模型的单

参数估计 , 量子 Fisher信息在能隙闭合区域和

EP点附近呈现峰值, 其动量空间积分也显著增大,

因此可用于提高参数估计的精度. 最后基于二维非

厄米拓扑陈绝缘体模型和二能级系统进行两参数

估计, 同样地, 量子 Fisher信息矩阵行列式及其动

量空间积分在能隙闭合或 EP附近也明显增大. 此

外, 量子 Fisher信息矩阵行列式在拓扑区域整体

大于平庸区域, 说明利用非厄米拓扑态进行参数估

计的精度比平庸态更高, 同时确定了两参数估计误

差的拓扑下界. 这些结果揭示了非厄米 EP点和拓

扑特性在量子参数估计中的应用, 有助于开展基于

非厄米系统的量子精密测量研究.

目前已经有多个量子系统实验实现了非厄米

有效哈密顿量, 如单光子 [24,25]、冷原子 [26]、金刚石

NV色心 [27] 和超导量子比特 [28] 等. 与此同时, 最

近已有实验报道了厄米系统量子 Fisher信息或量

子度规的测量, 如在金刚石 NV色心中测量单参数

估计 [12] 和多参数估计 [13−15] 的量子 Fisher信息

(矩阵), 在核磁共振系统 [18] 中测量量子 Fisher信

息, 在超导量子比特系统 [9−11] 中测量量子度规等;

甚至通过光子系统实验测量了非厄米有效哈密顿

量中 EP点附近的量子度规 [32]. 结合这些实验进

展, 本文基于非厄米系统的量子参数估计方案有望

在实验中实现. 最后需要指出的是, 本文研究局限

于非厄米哈密顿量本征态, 如何基于非幺正演化动

力学和开放系统中的混合态进行最优化参数估计

需要进一步探索. 另外, 利用非厄米量子多体效应

进行量子精密测量也是值得深入研究的课题.
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Fig. 5. Two-parameter estimation based on the non-Hermitian two-level system. (a)     and (b) V as functions of r and d for

estimating   .    in panel (a) is logarithmically plotted.
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附录 A

ρ = |ψ⟩⟨ψ|

µ, ν 2× 2 Σµν

2× 2 Fµν

|ψ⟩

考虑量子系统密度矩阵   , 对于未知参数

 的评估误差为  的协方差矩阵  , 相应的评估

精度由  的量子 Fisher信息矩阵  刻画. 对于厄米

系统中的量子态  , 量子 Fisher信息矩阵元为
 

Fµν =
1

2
Tr(ρ{Lµ,Lν})

= 4Re(⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩),

Lµ(ν)

∂µ(ν)ρ = (Lµ(ν)ρ+ ρLµ(ν))/2

|ψ⟩
⟨ψ|ψ⟩ = 1

其中{, }表示反对易关系, 对称对数导数算符 

由   定义 . 考虑定态

情况中非厄米系统量子态   , 满足归一化条件

 以及相同的保留对称对数导数算符, 其

量子 Fisher信息矩阵元为 

Fµν =
1

2
Tr(ρ{Lµ, Lν})

= 4[⟨ψ|∂µψ⟩⟨ψ|∂νψ⟩+ ⟨∂µψ|ψ⟩⟨∂νψ|ψ⟩

+ ⟨ψ|∂µψ⟩⟨∂νψ|ψ⟩+ Re(⟨∂µψ|∂νψ⟩)]

= 4Re(⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩), (A1)

⟨∂ψ|ψ⟩ = −⟨ψ|∂ψ⟩

Σµν ⩾ 1/Fµν

其中用到了关系  . 这里只利用非厄米

系统特定本征态做参数评估, 因此不受本征态的非正交性

以及非幺正演化的影响. 此时两参数估计的 QCRB仍满足

 , 可以由矩阵的迹的柯西不等式得到:
 

Tr(X†X)Tr(Y †Y ) ⩾ 1

4
|Tr(X†Y + Y †X)|2, (A2)

Σµν Fµν {fµ, fν},

{gµ, gν} f = (fµ, fν)
T, g = (gµ, gν)

T

X = fµLµ
√
ρ+ fνLν

√
ρ, Y = gµ(Ôµ − ⟨Ôµ⟩)

√
ρ+ gν(Ôν − ⟨Ôν⟩)

√
ρ Ôµ, Ôν

µ, ν

由于  和  都是实矩阵, 定义两个实数集合 

 以及实向量   . 同

时定义    

 , 其 中   是 未 知 参 数

 的测量算符, 可以得到 

Tr(X†X) = fTFµνf , Tr(Y †Y ) = gTΣµνg, (A3)

Σµν Covµν = Tr
[
ρ
(1
2
{Ôµ, Ôν} − ⟨Ôµ⟩

⟨Ôν⟩
)]

Tr(ρÔl) = l

Tr[(∂mρ)Ôl]=δml m, l∈{µ, ν} 1

2
{ρ, Lm}=

∂mρ,Tr(∂mρ) = 0

其 中   矩 阵 元  

 . 考虑无偏估计条件  , 对其求偏导可得

 , 其中  . 结合 

 , (A2)式右边化简为
  ∣∣∣∣12Tr(X†Y + Y †X)

∣∣∣∣2 = (fTg)2, (A4)

Fµν f = F−1
µν g

Σµν ⩾ 1/Fµν

当矩阵   可逆 , 令向量满足关系式   , 联合

(A2)式—(A4)式, 可得  .

Fµν Ωµν此外, 量子 Fisher信息矩阵   和贝里曲率   的

Â = ∇µ, B̂ = ∇ν
Fµν

Fµµ = 4(∆Â)2, Fνν = 4(∆B̂)2, Fµν =

4Re(⟨Â†B̂⟩ − ⟨Â†⟩⟨B̂⟩) = Fνµ Ωµν =

i(⟨∂µψ|∂νψ⟩ − ⟨∂νψ|∂µψ⟩) = i(⟨Â†B̂⟩ − ⟨B̂†Â⟩)

关系可以由非厄米算符的不确定关系导出. 定义非厄米导数

算符  , 则量子 Fisher信息矩阵  的矩

阵元可简化为      

 , 贝里曲率为  

 .  同

时, 非厄米算符的不确定关系为 

(∆Â)2(∆B̂)2 ⩾ |⟨Â†B̂⟩ − ⟨Â†⟩⟨B̂⟩|2

= ⟨Â†B̂⟩⟨B̂†Â⟩ − ⟨Â†B̂⟩⟨B̂†⟩⟨Â⟩

− ⟨B̂†Â⟩⟨Â†⟩⟨B̂⟩+ ⟨Â†⟩⟨Â⟩⟨B̂†⟩⟨B̂⟩, (A5)

Fµν而  的非对角元与贝里曲率满足关系式 

FµνFνµ + 4Ω2
µν

= 16(⟨Â†B̂⟩⟨B̂†Â⟩ − ⟨Â†B̂⟩⟨B̂†⟩⟨Â⟩

− ⟨B̂†Â⟩⟨Â†⟩⟨B̂⟩+ ⟨Â†⟩⟨Â⟩⟨B̂†⟩⟨B̂⟩), (A6)

det(Fµν) ⩾ 4Ω2
µν

|f⟩ = N |g⟩
|f⟩ = Â|ψ⟩ − ⟨Â⟩|ψ⟩ |g⟩ = B̂|ψ⟩ − ⟨B̂⟩|ψ⟩

因此,   . 等号成立条件为非厄米算符不

确定关系的等号条件, 即  , N 是一个复数即可,

其中  ,   .
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Abstract

Quantum  Fisher  information  bounds  the  ultimate  precision  limit  in  the  parameter  estimation  and  has

important applications in quantum metrology. In recent years, the theoretical and experimental studies of non-

Hermitian  Hamiltonians  realized  in  quantum  systems  have  attracted  wide  attention.  Here,  the  parameter

estimation based on eigenstates of non-Hermitian Hamiltonians is investigated, and the corresponding quantum

Fisher  information  and  quantum Cramér-Rao  bound  for  the  single-parameter  and  two-parameter  estimations

are  given.  In  particular,  the  quantum Fisher  information  about  estimating  intrinsic  momentum and  external

parameters in the non-reciprocal and gain-and-loss Su-Schrieffer-Heeger models, and non-Hermitian versions of

the  quantum Ising chain,  Chern-insulator  model  and two-level  system are  calculated and analyzed.  For  these

non-Hermitian models, the results show that in the case of single-parameter estimation in these non-Hermitian

models, the quantum Fisher information increases significantly in the gapless regime and near the exceptional

points, which can improve the accuracy limit of parameter estimation. For the two-parameter estimation, the

determinant of the quantum Fisher information matrix also increases obviously near the gapless and exceptional

points.  In  addition,  a  higher  overall  accuracy  can  be  achieved  in  the  topological  regime  than  in  the  trivial

regime, and the topological bound in two-parameter estimation can be determined by the Chern number.
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