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Table 1. Bandgap, averaged absolute value of NA

coupling (NAC), pure-dephasing time (T,), and
nonradiative charge recombination time (7,.) of

CsPbBr;  CsPby 75Geg 95Brs  CsPhyg 5Geg 5550 25B13

systems.
E,/eV NAC/meV Ty/fs Tye./ps
CsPbBrj 1.73 2.0 8.97 110
CsPby.75Geg.o5Br3 1.44 2.2 6.96 176
CsPby 5Geg 255n9.95Brs  1.05 2.1 6.20 462
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Fig. 1. Crystal structure diagrams of three perovskite systems at 0 K (top) and 300 K (bottom) of (a) CsPbBrs, (b) CsPbys

Gey95Br3, (c) CsPby;Gey 2551025813
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Fig. 2. Projected density of states (PDOS) of (a) CsPbBrjy, (b) CsPb75Geg95Brs, (¢) CsPby5Geg 95590 95Br3 systems.

Bl 3 (a) CsPbBry, (b) CsPby 75Gego5Brs, (¢) CsPby ;Geg 05510 95B13 4 & Ht HOMO F1 LUMO [ Hi faf 25 i
Fig. 3. Charge densities of the photoexcited states showing HOMO and LUMO of (a) CsPbBrs, (b) CsPbg5GeqosBrs,

(¢) CsPby 5Geg 9551 95Br3 systems.
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Fig. 4. Comparison of IPRs between VBM and CBM of the doped system and the original system (dashed lines represent the average).
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Fig. 5. Population evolution of HUMO of the pristine CsPb-
Brj, CsPby 73Geq 95Br3, CsPby 5Geq 9550 95Brs.
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Abstract

Perovskite solar cells have been a prominent focus in the field of photovoltaics in recent decades, owing to
their exceptional performance: easy synthesis, and cost-effectiveness. The all-inorganic cesium-based perovskite
CsPbBr;, known for its remarkable thermal stability, has become a star material in the field of optoelectronics
due to its outstanding luminescent properties. Despite the high efficiency of lead-based perovskite solar cells, the
toxicity associated with lead and the poor long-term stability of these devices remain significant barriers to their
large-scale commercialization. As is well known, non-radiative electron-hole recombination significantly shortens
the carrier lifetime, acting as a primary pathway for excited state charge to loss energy. This phenomenon
directly affects the photovoltaic conversion efficiency and charge transfer performance of perovskite materials.
Therefore, maximizing the reduction of non-radiative recombination energy loss in perovskite solar cells has
become a crucial research focus. In this study, a systematic exploration is conducted by using a non-adiabatic
molecular dynamics approach combined with time-dependent density functional theory to investigate the
excited-state carrier dynamics of CsPbBrj and its alloyed structures, CsPby 75Gego5Brs and CsPbg 5Geg 2591 95Br3.
The study comprehensively analyzes the non-radiative electron-hole recombination scenarios and the
mechanisms for reducing charge energy loss based on crystal structure, electronic properties, and excited-state
properties. The research findings reveal that alloying with Sn/Ge can reduce the bandgap, increase non-
adiabatic coupling, and shorten the decoherence time. The interplay of reduced quantum decoherence, smaller
bandgap, and larger non-adiabatic coupling effectively decelerates the electron-hole recombination process.
Consequently, the carrier lifetime of the CsPby;5Geyo5Brs system extends by 1.6 times. Moreover, under the
joint influence of Sn/Ge, the carrier lifetime of the CsPb 5Geg 9551, 95Brs system extends by 4.2 times compared
with those of the original system. The overall sequence follows CsPbg5Gego5Sngo5Brs > CsPbg 75GegasBry >
CsPbBr;. This study underscores the significant influence of binary alloying of B-site metal cations (in the
perovskite structure ABXj;, where B-site refers to the metal cation) on the non-radiative electron-hole
recombination of CsPbBrs.This research presents an effective alloying scheme that substantially prolongs the
carrier lifetime of perovskites, offering a rational approach to optimizing solar cell performance. It lays the
groundwork for the future design of perovskite solar cell materials.

Keywords: CsPbBr;, nonadiabatic molecular dynamics, alloy, nonradiative electron-hole recombination
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