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Fig. 1. Transverse distributions of electric fields Ey obtained by three-dimensional (3D) particle-in-cell (PIC) simulations for differ-

ent laser intensities (a)—(d) @ =0.01, (e)-(h) a=0.1, (i)~(1) @ =0.2, when a circularly polarized vortex light beam with

=1, ox =1 propagates in the plasma over different distances (a)(e)(i) = =5 um, (b)(f)(j) = =10 um, (c)(g)(k) = =15 pum,

(A)(R)(1) & =20 um.
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Fig. 2. Distribution of electric field Ey in k-space along the
propagation direction obtained by 3D PIC simulations
when a [ =1, 0 =1 circularly polarized vortex light

beam with a = 0.2 propagates in a plasma with a density
of ne = 0.56n .
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Fig. 3. Transverse distributions of electric fields FE, obtained by the phase-correction model taking into account the relativistic

electron mass effect when a I =1, o, =1 circularly polarized vortex light beam with a = 0.2 propagating in the plasma over dif-

ferent distances: (a) x =5um; (b) =10 um; (¢) * =15 um; (d) =20 um.
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Abstract

The propagation of electromagnetic wave in plasma is one of the long-standing concerns in the field of laser
plasma, and it is closely related to the researches of radiation source generation, particle acceleration, and
inertial confinement fusion. Recently, the proposal of various schemes for generating intense vortex beams has
led to an increasing number of researchers focusing on the interaction between intense vortex beams and
plasmas, resulting in significant research progress in various areas, such as particle acceleration, high-order
harmonic generation, quasi-static self-generated magnetic fields, and parametric instability. Compared with
traditional Gaussian beams, vortex beams, featuring their hollow amplitudes and helical phases, can exhibit
novel phenomena during propagating through plasma. In this work, we primarily focus on studying the
influence of the propagation process on the wave structure of vortex beams before filamentation occurs. The
three-dimensional particle-in-cell simulations show that weakly relativistic vortex beams exhibit wavefront
distortion during their propagation in plasma. The distortion degree is closely related to the intensity of the
electromagnetic wave and the propagation distance for a given plasma density. This phenomenon is
theoretically explained by using a phase correction model that considers the relativistic mass correction of
electrons. Additionally, we demonstrate that the wavefront distortion can be compensated for and suppressed
by appropriately modulating the initial plasma density, as confirmed by three-dimensional particle simulations.
The results of decomposing the wavefront into Laguerre-Gaussian (LG) mode components indicate that the
wavefront distortion is primarily caused by high-order p LG modes, and it is independent of other [ LG modes.
Additionally, we extend the present investigation to the propagation of vortex beams in axially magnetized
plasma, where the phase correction model can also effectively explain the occurrence of wavefront distortion.
Our work can deepen the understanding of the interaction between plasma and strong vortex beams, and
provide some valuable references for designing plasma devices serving as the manipulation of intense vortex

beams in future research.
Keywords: laser plasma physics, vortex beam, nonlinear propagation, particle-in-cell simulation
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