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Fig. 1. Geometric structures of (a) GaS and (b) Mg(OH), monolayers; (c), (e) and (d), (f) are the PDOS and band structures of

GaS and Mg(OH), monolayers, respectively.
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Table 1.  Lattice parameters a, bond lengths d, band gaps and the band edge positions with respect to vacuum for GaS and
Mg(OH), monolayers, and heterostructure, respectively.
Structure a/A deo s/A da ca/A dyig 0/ A do /A E,/eV Eopn/eV Eypy/eV
GaS 3.639 2.368 2.476 — — 3.212 -3.603 —-6.815
Mg(OH), 3.149 — — 2.094 0.966 4.733 -0.825 —5.5568
GaS/Mg(OH), 6.225 2.352 2.441 2.082 0.964 2.021 3.497 5.518
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Fig. 2. Top and side views for three different conformations of GaMg-HS: (a) H1; (b) H2; (c) H3.
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Fig. 3. (a) Phonon spectra for GaMg-HS; (b), (c¢) top and side views of the snapshot of GaMg-HS at the end of simulations;

(d), (e) variations of total energy and temperature against the time for simulations.
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Fig. 4. (a) Projected band structure for GaMg-HS, the bands plotted in red and blue indicate the bands are dominated by GaS and
Mg(OH), monolayers, respectively; (b), (c) the total and projected density of states for GaMg-HS (Fermi level is indicated by a

dashed line).
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Fig. 5. (a) Schematic diagram of interfacial charge separation mechanism of GaMg-HS; (b) the charge-density difference for GaMg-

HS, the yellow and cyan areas represent electron accumulation and depletion, respectively; (¢) the charge density of GaMg-HS for

the VBM and the CBM (the isovalue is 0.003 e/A3).
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Fig. 6. (a) Band gaps and strain energies as a function of in-plane biaxial strain for GaMg-HS; (b) band edge alignment of the

GaMg-HS under different in-plane biaxial strains with respect to the water redox potentials, respectively.
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Fig. 7. Band structures of GaMg-HS as a function of in-layer biaxial tensile strain: (a) 0%; (b) 1%; (c) 2%; (d) 3%; (e) 4%; (£) 5%.
The conduction band lines at the I" point are labeled as A (red), B (blue), C (green), and D (olive), respectively.
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(d) 3%; (e) 4%; (f) 5%. The size of the circles in each band denotes the contributions from different atomic orbitals.
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Table 2. Bond lengths of GaMg-HS under the dif-

ferent in-layer biaxial tensile strain: 0%-5%.

Strain ds—ca/A dga—ca /A hs—Ga/A
0% 2.351 2.441 1.116
1% 2.361 2.443 1.099
2% 2.371 2.444 1.080
3% 2.382 2.446 1.062
4% 2.392 2.447 1.040
5% 2.403 2.450 1.025

Forfr ey e 4390 0 52 A0 HaL RN SR A . 40
Kl 9 s, 5 GaS A1 Mg(OH), HZ M b, GaMg-
HS M 6m e se I 15 80 T 35, Shihni Ak 3%
if, GaMg-HS [OGIRISRE J1 B3 T 15 2 iF— 20 Hg 5
Hb, SERIBGA KB TT 1R 31, ZEAR R A] WG, 3%
# W GaMg-HS B IPERE L GaS 1 Mg(OH),
BZMRLE A . HI, GaMg-HS t T HA &6

)

— Mg(OH):

— GaS

— GaS/Mg(OH),
| — GaS/Mg(OH)2-3%
—— Solar spectrum

)*(‘\v

w

o
Solar spectrum/(W-m

Absorption coefficient/(10° cm—1)
()

Energy/eV

9 GaS il Mg(OH), ¥ )2 DL K CGaMg-HS B 6 W Y 3% |
B 25 T R A R A Sy 3% B B G BORS AE o X L

Fig. 9. Optical absorption spectra for GaS and Mg(OH),
monolayers as well as the GaMg-HS, the optical absorb-
ance spectrum at a tensile strain of 3% is also shown for

comparison.
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First-principles study on electronic structure of
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Abstract

Constructing Type-II heterostructure is an effective scheme to tailor the electronic structure and improve
the application performance. Motivated by recently successful syntheses of Mg(OH), and GaS monolayers, we
investigate the stability, electronic, and optical properties of GaS/Mg(OH), heterostructure by using the density
functional theory method. The calculated results show that GaS/Mg(OH), heterostructure is easily constructed
due to its small lattice mismatch, negative binding energy, and thermodynamic stability. Compared with
monolayer materials, the GaS/Mg(OH), heterostructure has a band gap that effectively decreases to 2.021 eV
and has Type-II band structure, facilitating the spatial separation of photo-generated carriers where electrons
are localized in the GaS and holes reside in the Mg(OH), monolayers. The built-in electric field induced by the
interlayer charge transfer points from GaS to Mg(OH), monolayer, which can further improve the separation
and suppress the recombination of electron-hole pairs. Under the biaxial strain, the valance band maximum and
conduction band minimum of GaS/Mg(OH), heterostructure shift in the downward direction to different
extents, resulting in obvious change of band gap, with the change reaching about 0.5 eV. Furthermore, the band
structure of GaS/Mg(OH), heterostructure can be transformed from indirect band gap semiconductor into
direct band gap semiconductor under the tensile strain, while GaS/Mg(OH), heterostructure maintains Type-II
band structure. Additionally, the band edge positions of GaS/Mg(OH), heterostructure can also be effectively
adjusted to cross the redox potentials of water decomposition at pH = 0-7. The light absorption spectra show
that GaS/Mg(OH), heterostructure has stronger light absorption capability than the constituent monolayers.
Especially, the light absorption has an obvious redshift phenomenon at a tensile strain of 3%. These findings
indicate that the GaS/Mg(OH), heterostructure has a wide range of applications in the field of optoelectronics

due to the tunable electronic properties, and also provides some valuable insights for future research.
Keywords: heterostructure, electronic structure, strain, first-principle methods
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