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ent power-law indices ( Re = 100): (a) The vertical velo-
city profile; (b) the horizontal velocity profile.
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Fig. 4. The comparisons of the velocity profiles along the centerlines at Re = 1000 : (a) The vertical velocity profile; (b) the hori-
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Fig. 6. The trajectories of the circular particle moving in the lid-driven cavity flows under different power-law indices and different

initial positions: (a) n =0.5; (b) n=1.0;(c) n=1.5.
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Fig. 7. The limit cycles of the circular particle moving in the power-law lid-driven cavity flows with different power-law indices and

Reynolds numbers: (a) Re = 500; (b) Re = 1000; (c) Re = 2000 .
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Fig. 8. The streamlines of power-law fluid flows and the positions of the circular particle under different power-law indices:

(a) n=0.5;(b) n=1.0;(c) n=15.
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Fig. 9. The evolutions of particle velocity under different power-law indices: (a) Re = 500; (b) Re = 1000; (c) Re = 2000 .
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indices: (a) n=0.5; (b) n=1.0; (c) n=1.5.
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Abstract

In this paper, the motion of a circular particle in a lid-driven square cavity with the power-law fluid is
studied by using the diffuse interface lattice Boltzmann method, and the study mainly considers the effects of
the particle's initial position, the power-law index, the Reynolds number, and the particle size. The numerical
results show that the circular particle is first in a centrifugal motion under the effect of inertia, and it finally
moves steadily on the limit cycle. Furthermore, it is also found that the initial position of the particle has no
influence on the limit cycle. For a shear-thinning fluid flow, the limit cycle moves towards the bottom right
corner of the square cavity. Moreover, the particle velocity is small, and the period of the particle motion is
long. On the other hand, in the case of shear-thickening fluid flow, the limit cycle moves towards the top left
corner of the cavity. In addition, the particle velocity is large, and the period of the particle motion is
short.With the increase of Reynolds number, the limit cycle moves towards the bottom right corner of the
square cavity, which is caused by a strong fluid flow field. Meanwhile, the particle velocity becomes larger, and
the period of the particle motion is shorter. With the increase of particle size, the effect of confinement of the
cavity boundary becomes significant, and the circular particle is pushed towards the center of the cavity. In this
case, the limit cycle shrinks towards the center of the cavity. The circular particle squeezes the secondary
vortices, especially when the circular particle is located in the bottom left, bottom right and top left corners.
Additionally, the appearance of the circular particle has a significant influence on the position of the primary
vortex, which changes periodically near the position of the primary vortex without the particle. It is also
observed that the influence of the circular particle becomes more significant as its size increases and the power-

law index decreases.
Keywords: lattice Boltzmann method, circular particle, power-law, lid-driven cavity
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