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Table 1.  Discharge parameters of DOMS using different

micropulse on-time.

FEHL kb W fE W fE AR
BV B )7, /ps B/ Vo ER/A IIR/AW
300 2 635.8 27.5 14.4
300 3 729.0 50.6 29.8
300 4 714.4 494 29.2
300 5 726.0 51.5 31.0
300 6 731.6 51.5 30.8
340 6 810.6 63.8 42.2
380 6 870.7 73.5 48.7
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Fig. 1. Typical target voltage and current waveforms of a
DOMS discharge with 7,, = 2 ps and DC;,;; = 300 V.
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Table 2. Reactions considered in DOMS plasma using a Cr target.

i [F{E /eV HARZRE/ ()
e+ Ar — Art + 2 15.76 2.3 x 10717059 exp(—17.44/T,)
e+ Ar— A te 11.56 2.5 x 10715797 exp(—11.56/T¢)
e + Arm — Art + 2e 4.20 6.8 x 107157967 exp(—4.2/T¢)
e+ Cr— Crt + 2¢ 6.76 4.12 x 10713770151 exp(—10.71/T¢)
e + Crt — Cr?* + 2e 16.49 5.27 x 1071470-087 exp(—22.05/T¢)
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3.3 x 10~16
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Fig. 2. Experimental and calculated current waveforms at

Ton = 2 HS.
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Fig. 3. Temporal evolution of charged particle densities in
DOMS plasmas: (a) 7., = 2 ps; (b) 7., = 6 ps.
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10 m 3, CriEFNIH 1.33x10'7 m 3 #4 KK 3.89x
10'7 m3. [ E K I S R 6 s, 7 HORL U6 (A
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(a) —— Cold electron
6+ — Art — Cr*t
—— Cr?t —— Hot electrons

Density/(10'® m~3)

NV NN N NN

0 100 150 200
Time/ps
(b) — Cold electron
6 — Art — Cr*t
—— Cr2t —— Hot electrons

Density/(10'® m~3)

NN AN AN

0 50 100 150 200
Time/ps

€l 4 DOMS S5EFAity i b2 BERfR (254 (a) DCyy =
340 V; (b) DC;,, = 380 V

Fig. 4. Temporal evolution of charged particle densities in
DOMS plasmas: (a) DC;,; = 340 V; (b) DC;,, = 380 V.
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Fig. 5. Peak densities of charged particle densities as func-
tions of the different parameters: (a) Micropulse on-time;

(b) charging voltage.
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Fig. 6. Peak ionization degrees of Cr and Ar as functions of:

(a) Micropulse on-time; (b) charging voltage.
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Fig. 7. Temporal evolution of normalized density of work-
ing gas in the ionization region: (a) 7,, = 2 and 6 ps;
(b) DG, = 340 and 380 V.
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Fig. 8. Dynamics of Ar atoms at DCy,; = 300 V: (a) 7, =
2 ps; (b) 7,, = 6 ps.
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Fig. 9. Temporal evolution of metal self-sputtering paramet-
er: (a) 7, = 2 and 6 ps; (b) DCy,; = 340 and 380 V.

P10 25 1 T E 4 IR A G S8 1T, FHTK
Jik op I I BFIE] 7, FEHLH R DCyy DA SRR T 56
BE RV, IT e B 7, SEAN 0.07 35 2 0.13 FfiJ5
FEANAS, GIE(E %R FIRE R 7, 21
FAAL, T IT,0 B DCy MRS K, B35 3] 0.20.
K 10(c) gith TR 2280 11, BEVEIH D)%%
JEARE, Hop g R R A A0 SO PR AL 616 cm?,
TAESJE 0.3 Pa f3 B AYSE R, 21 (0 15 R #8 m FR
225 cm?, TAEJE 0.8 Pa. #1616 cm?, T/E
KJE 0.3 Pa, 7, 1 2 ps B 3 ps i, WE(H IR
JEH 0.023 kW /em? 34 % 0.050 kW /em?, [ I 5t

ZRBEZ ETF, {H 7, = 3—6 ps I DOMS I&{H3)
R EF ARG SEEEA N, 1., = 6 ps, BEIN7T
HL LR 2R 380 V BEAE IF — 25 1y W (T R %5
IT,, o FEZ RAPEG K, R BIWEAE D) 40 5% FE J2 J45 4
J& B IS AT 0 S L. R E AL 616 cm?, T
PERUE 0.3 Pa 550 T, Ipeq Tk 2] 0.20, BR
IRE AR AMRGPIRES, B4R Ak — e R L5
S0, RERE A R AR R AR IR R D AR
BT, A R R R T U R v AR B R s
N 22 $ S ORR R T i I/ N TR 2 225 em?,
Fo L L T 280 VI E 400 V, W T R % K

0.20

(a)

0.05

Self-sputtering parameter/arb. units

1 2 3 4 5 6 7
Micropulse on-time/qus

0.30

0.25

0.20 1 o

Self-sputtering parameter/arb. units

280 300 320 340 360 380 400
Charging voltage/V

wn

£ 1.2

5 (c) o

el o

2 09}

E o Pressure = 0.8 Pa

+ Target area = 225 cm?
£ ° Ton = 6 1S,

£ 0.6 DGy = 260—400 V

a

60

2 0.3} Pressure = 0.3 Pa

é’ AL Target area = 616 cm?
a o @ O Ton = 2—6 us, DCj,y = 300 V
£ oo} A Ton = 6 pis, DCiy = 340—380 V
< . A L L .

n 0 0.05 0.10 0.15 0.20 0.25 0.30

Peak power density/(kW-cm~2)

K10 WEfE SR F RS S EEEA RIS HB (o) BOKh
FEIBFIE]; (b) FEHL L ; () W TR % i
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Abstract

A global model for deep oscillation magnetron sputtering (DOMS) discharge is established to investigate
the plasma characteristics in the ionization region. Target voltage and current waveforms with micropulse on-
time 7,, of 2-6 ps and charging voltage of 300-380 V are acquired and used as an input of the proposed model.
The effects of micropulse on-time and charging voltage on the plasma are investigated. At 7., = 2 us, the
DOMS plasma density oscillates with the discharge current waveform. The plasma is mainly composed of Ar+t
ions though the ionization fraction of Ar is only 2%. The proportion of Cr* ions is lower but has a relatively
high ionization fraction of 12%, and Cr?* ions are negligible. The peak plasma density increases from 1.34x10' m 3
at 7, = 2 ps to 2.64x10¥® m3 at 7, = 3 ps and the metal ionization fraction increases to 20%. Further
increasing the on-time leads the peak density and ionization fraction to slightly change. When the charging
voltage increases from 300 V to 380 V at 7, = 6 ps, the peak plasma density increases linearly from 2.67x 10" m3
to 3.90x10'® m™3, and the metal ionization fraction increases from 21% to 28%. The gas rarefaction occurs in the
ionization region for DOMS discharge. The gas density oscillates in the initial stage of macropulse, and 56
micropulses later it reaches dynamic equilibrium. The Ar density dynamics shows that the Ar consumption is
mainly caused by electron impact ionization, followed by electron impact excitation, and the consumption rate
caused by sputter wind is about 10% of the electron impact ionization. The typical metal self-sputtering
phenomenon of high power impulse magnetron sputtering (HiPIMS) also appears in the DOMS discharge. The
peak value of self-sputtering parameter increases linearly with the peak power density rising. This suggests that
the peak power density is one of the important parameters to manipulate the metal self-sputtering process in
the DOMS discharge. The peak value of self-sputtering parameter reaches up to 0.20, indicating that a certain
degree of metal self-sputtering occurs. The plasma density and the ionization fraction of the depositing flux are
improved, which relieves the shadowing effect during conventional magnetron sputtering as a result of low

ionization degree of sputtered metal.

Keywords: deep oscillation magnetron sputtering, magnetron plasma, global model, Cr target, metal self-

sputtering
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