#) 32 2 3R Acta Phys. Sin. Vol. 73, No. 13 (2024)

130701

BRARFLAIFRK

x| EED x|V TED
HEAY  EAEIOMN

O x| F

D A

EFR

£ 4 50

1) (WP RGBT, O 5ot Fa i E 5 A5, KB 030006)
2) (IIPER2= Y3 ¥ T AR B¢, KI5 030006)
3) (VUK Mt Rl .G, KRB 030006)
4) (MRIEERHEARA R, Ki— A S EAREZE A9, Jbst 100095)
5) (" EAIAATE ORBESOR L2 , K 300131)
6) (RHH Rt FREB M AR T e s, Ridt 300131)
(2024 4F 3 1 19 HH; 2024 4E 4 A 30 HIEMEEH)

JEL 1A 2 B W S 37 B4 i SRR, S AE R A T E AN RR RO F AL LT (tune-out) 7 .
BRI A9 tune-out PRI RME, AR SCBETT S I 0 BP0 H ke, R T W R RN i W
(amplitude modulation electromagnetically induced transparency, AM-EIT) Jt 1% 4% AR 52 B tune-out 3+ I iz .
SR RO TG A i A5 e IR T BB A, R B0 80 e i BN 375 B (electromagnetically induced transpar-
ency, EIT) Yt s B HLEEA 71 AR I 30 i Rp 0ot = 7 2 4140 0 o L8P 5~ AM-EIT {555 7 tune-out
WA Al | ABUTHE A REGON H bR AR S s S AL N %, I 5 302 Stark 00 AHTH , AM-EIT {5 5155 3 Al
HENT A A = REHASE R FE tune-out P, HIE 5 WL R AT A

KR IO, T, EERRLEYDGE, KIF K

PACS: 07.57.—c, 31.15.ap, 32.80.Ee

1 3

AT TR TR RO SR T
HHA R W BRAT H (AR R R AR Ak 5, X L 3%
T WU RS RR A  B R R S Rk
Stark RN 8Y Zeeman RN, H T2 1 )5 F BE R
PEHEVE 5 R AR B ARG, AL H R R
% A1 g e oy AR A P R O AN R R
AN [ BEAS B AR AL R/ N R M — R I A g

il

DOI: 10.7498/aps.73.20240397

FR A D FH L RE 25 BRAE B BE4X (magic) P K, 4N
Bl 1(a) Fros; SM70E T R sh A8 AL 95 A0 1
B, AN SO FR A SR RE S A AL
B Z]% (tune-out) Pl tune-out HH WKl 1(b)
iR B9 BT tune-out K MBI R 7R SL AR}
F SN HTZ, T tune-out JEHL Y T
WEEARLE BRI & | 8RS EES
AR A A5 LA N H] 67 A OGBS N AR AL A
FARY RO Z A5 RIS T IRk A
AR I A 15100,

o [ AR PR R R S 2 TR 4 (kS 2023010201) B BAMIGLEL.

t BfEYEH . E-mail: hejun@sxu.edu.cn
1 BfEYE#H . E-mail: duyijiehandan@163.com
1 WA51EH . B-mail: wiy3861@163.com

© 2024 FEYIEZS Chinese Physical Society

http://wulixb.iphy.ac.cn

130701-1


http://doi.org/10.7498/aps.73.20240397
mailto:hejun@sxu.edu.cn
mailto:hejun@sxu.edu.cn
mailto:duyijiehandan@163.com
mailto:duyijiehandan@163.com
mailto:wjy3861@163.com
mailto:wjy3861@163.com
http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

¥ 1B ¥ Acta Phys. Sin.

Vol. 73, No. 13 (2024)

130701

(a) 2

hv

(b) 2

1 R
AFE,=0

K1 (a) BEEE KR EZE; (b) tune-out P /R & &l
Fig. 1. (a) Schematic diagram of magic wavelength; (b) sch-

ematic diagram of tune-out wavelength.
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Fig. 2. (a) In the first part, schematic of a three-level Ry-
dberg atom system with a ground state |6$1/2> , an inter-
mediate state |6P3/2> , and an excited state |65Sl/2> LA
weak probe laser couples }681 /2> with |6P3 /2> for Rabi
frequency {2, and a strong coupling laser couples |6P3 /2>
with }6551 /2> for Rabi frequency f2.. A, and Ac are
the laser detuning of the probe and coupling lasers, respect-
ively. In part two, The four microwave transitions adjacent
to Rydberg state |65S1/2> are 6551/ — 64Py1/9,
6581/2 — 641)3/27 6531/2 — 65P1/2 s 6581/2 — 65?3/2;
(b) transmission of the probe laser as the function of the

coupling laser detuning.
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Fig. 3. Theoretical calculation of ground state tune-out

spectrum of cesium atoms.
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Fig. 4. Experimental set-up. A/2, half-wave plate; PBS, polarizing beam splitter cube; L, lens; DM1, DM4, 852 nm high reflectivity
(HR) and 509 nm high transmissivity (HT) dichroic mirror; DM2, DM3, 852 nm high transmissivity (HT) and 509 nm high re-
flectivity (HR) dichroic mirror; PD, photodiode; SAS, saturation absorption spectroscopy; D, optical dump.
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Fig. 5. (a) Microwave resonance transitions and tune-out spectrum of Rydberg state |65Sl /2> ; (b) theoretical calculation of the

tune-out wavelength between the two transitions, 65S;,o — 64P3,5 and 65815 — 65P3, 5.

HWHREERHRGE AR, FTLRNELR, KA 65819 — 65P /o, 65S;,9 — 64P3, o AR G BRAT
Z MRS HS I RER A1k R G0N = REAR A B XN tune-out P4~ 22.4 mm, HIN tune-out 4

186551/ 2) A BIE I BRSO AL, N 13.40 GHz, 145 R 5 925000 5 45 S AR 2
AR BE PR A AR AR AN |64P3/2>> |65P3/2> ) +50 MHz; 65S;,5 — 65P3/5, 65S;,9 — 64P1/2;i
T OB 8, 5 R0 2 5 2040, 5 4 58 S S i R R R IR 0% BR 3 A9 tune-out J% £ 4 19.0 mm, AH
i 6581 /5 — 64P3,5, 65515 — 65P5, 5 XTHAY tune- tune-out 44 15.76 GHz, 11545 R 5 5250 i
out W K, I K~ 20.6 mm, #H 5 tune-out Hi F ZE LA 22490 MHz. FHX RS 7, BEASATEE

1 14.53 GHz, 118 45 38 5 50560 I = 25 2L A1 2= AR B, FelE AR R LR,
+80 MHz, X451 3% 1) H 43 b o £0.55%. [A] A 5 5% AR AT AR I R, tune-out K&
T H A B A 25 tune-out P71, THHE 4 H INZ AT AR S B LT 5280 I & XA N B S

130701-5


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

#) 32 2 3R Acta Phys. Sin. Vol. 73, No. 13 (2024)

130701

B T AL, B SRR RS AR A R, SO
(=

AT A A A tune-out I K
6081/ — 60P3,5, 608,95 — 59P3, o LR BRI K A
N tune-out Jii% ULIEl 6(a). ZEWE{E XN 60S, /0 —
60P;, o TIE BRIT, BRAT M3 Ky 18.174 GHz, 4714
{ELXF I 60812 — 9P, o T BRIT , BR AT A 4 hy
19.416 GHz. 7 [A) A /)M 2 P LR Sl ipl SR 2 o) i
tune-out Y F 5, WK N 18.57 GHz. [ 6(b) %
7R 60815 — 60P3/5, 60819 — 59Py ;o FEHR BRI K
FHRYE tune-out JEiEIME S, S5 E 6(a) AHXT L.
ZeM i T I IARFE SRR 608, /5 — 60P3 5 FEHR
MR E 5 3 dB 9, K/h2) 22.4 MHz; 471
IME IR 22RO 608, /5 — 59Py o FEARAHIE
PR S 3 dB 58, K/ 26.9 MHz; a7
5 WA IR 227K 6081 /9 — 60Ps, 5, 608y —
59P3, 2 T B E 1 tune-out Y6i% {5 5 3 dB i B,
KNy 9.7 MHz.

(a) —70
80}
g _90f
4 90
o
~
# —100
il
ol
ﬂE —110
—120
—130 . . . . . . . . .
17.8 18.2 18.6 19.0 19.4 19.8
Hi7 /GHz
(b) 22.4 MHz 9.7 MHz 26.9 MHz
1000 |
0
=
g 500 j
8
g
& 0
b
iz
EE —500
=
—1000 |

18.0 18.2 184 18.6 18.8 19.0 19.2 19.4 19.6
iR /GHz

K6 (a) |60$1/2> A 25 X o7 A0 D L BR BRAE K tune-
out J5i%; (b) |60Sq,2) AT IIRERT K tune-out J&ik
i R

Fig. 6. (a) Microwave resonance transitions and tune-out
spectrum of Rydberg state |6051/2>; (b) differential sig-
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Abstract

The atomic polarizability represents the response characteristics of atoms to externally applied electro-
magnetic fields. The wavelength (or frequency) at which the dynamic polarizability of an atom is equal to zero
is referred to as the tune-out wavelength (or frequency). Spectroscopy technology based on the tune-out effect
has potential applications in quantum precision measurement, quantum computation and quantum
communication. Related research topics include the measurement of fundamental physical constants and strong
interactions. The tune-out wavelengths of atoms in low-lying states primarily fall within the optical band, where
the theoretical calculations and experimental measurements have significant progress. However, for Rydberg
atoms in highly excited states, theoretical calculations are challenging due to their high density of atomic states.
The difficulty of experimental measurement arises from small splitting of adjacent atomic energy levels. In this
paper, we demonstrate the tune-out wavelengths measurement for Rydberg atoms in a cesium vapor cell at
room temperature. We utilize a two-photon cascade excitation to prepare Rydberg states and employ
amplitude-modulation electromagnetically-induced transparency (AM-EIT) spectroscopy to measure the tune-
out wavelength. By continuously scanning the microwave frequencies, we obtain AM-EIT signals of Rydberg
atoms. At near-resonant microwave transition wavelengths, strong AM-EIT signals are observed due to
microwave-atom coupling. Conversely, at tune-out wavelengths, the dynamically polarization-induced
destructive interference in neighboring energy states occurs which leads to the weak AM-EIT signals. The AM-
EIT provides a spectral resolution of about 10 MHz. We have developed a simplified three-level model to
calculate the tune-out wavelength. The results of our theoretical calculations are consistent with the
experimental findings within a range of +90 MHz.

Keywords: Rydberg atom, cesium atoms, electromagnetically induced transparency spectrum, tune-out

wavelength
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