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Fig. 1. Schematic diagram of the interdependence network.
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Fig. 2. Schematic diagram of binary coupled network model and cascade failure.
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Abstract

Existing research on interdependent networks defines network functionality as being entirely on nodes or on
edges, which means interdependence between nodes and nodes, or interdependence between edges and edges.
However, the reality is not characterized solely by interdependence between functionalities of individual
elements, which means that it is not entirely a single-element coupled network. In some cases, nodes and edges
are interdependent. Considering this reality, a binary interdependent network model with node and edge
coupling (BINNEC), where both nodes and edges are interdependent, is proposed in this work. In this model,
nodes in network A randomly depend on multiple edges in network B, forming edge-dependent clusters.
Additionally, a failure tolerance parameter, denoted as u, is set for these edge-dependent clusters. When the
failure rate of an edge-dependent cluster exceeds pu, the failure of the nodes in network A that depends on it,
will happen. Based on the self-balancing probability method, a theoretical analysis framework is established.
Through computer simulation verification of BINNEC under three classical network structures, the model's
phase transition behavior and critical thresholds in the face of random attacks are analyzed. The results reveal
that BINNEC under three network structures is as fragile as a single-element coupled network, exhibiting a
first-order phase transition behavior. As the size of edge-dependent cluster m increases, network robustness is
enhanced. Moreover, with a constant size of edge-dependent cluster, a larger tolerance for node failure p leads
to stronger network robustness. Finally, this research reveals that under the same conditions of m and pu, when
the tolerance for node failure p is insufficient to withstand the failure of a single edge, the degree distribution
widens, and network robustness weakens. However, when the tolerance for node failure is sufficient to withstand
the failure of at least one edge, the network robustness actually strengthens as the degree distribution increases.
These findings provide a theoretical basis for studying such binary coupled models and also for guiding the

secure design of real-world networks.
Keywords: interdependent networks, binary coupling, failure tolerance, robustness

PACS: 89.75.-k, 89.75.Fb DOI: 10.7498 /aps.73.20240454

* Project supported by the National Natural Science Foundation of China (Grant Nos. 62341306, 12075088, 62263011) and the
Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB202033).

1 Corresponding author. E-mail: shmchen@ecjtu.jx.cn

168901-12


http://doi.org/10.7498/aps.73.20240454
mailto:shmchen@ecjtu.jx.cn
mailto:shmchen@ecjtu.jx.cn
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

Chinese Physical Society

%ﬂ *ﬁActa Physica Sinica

Institute of Physics, CAS

I ERE P EBRAT AT
BEm thtwm Bk HHER

Analysis of seepage behaviour in binary two—layer coupled networks
Gao Yan-Li  Xu Wei-Nan  Zhou Jie  Chen Shi-Ming

5] Fi{5 B Citation: Acta Physica Sinica, 73, 168901 (2024) DOI: 10.7498/aps.73.20240454
TEZE RT3 View online: https:/doi.org/10.7498/aps.73.20240454
BHAPIZS View table of contents: http://wulixb.iphy.ac.cn

FEAT ARG HoAh S

Articles you may be interested in

HA S HOBIL 52 2% l 22%_E 2R3

Cascading failures on complex networks with weak interdependency groups

WAL 2022, 71(11): 110505 https://doi.ore/10.7498/aps.70.20210850

i EIGBT S i G R ML RIS
Study on avalanche ruggedness of high voltage IGBTs
PPz 2023, 72(7): 078501  https://doi.org/10.7498/aps.72.20222248

FEF ] 73 51) 9 ) 455 R R A 7
Network failure model based on time series

PyFE2EAR. 2022, 71(8): 088901  https://doi.org/10.7498/aps.71.20212106

FE 275 1 Finstein—Podolsky—RosenZH 8 25 YE37 78 Y475 18 Hh 0 A& i 24 98 )i

Entanglement robustness of continuous variable Einstein—Podolsky—Rosen—entangled state distributed over optical fiber channel

PFEEEAR. 2022, 71(9): 094202 hitps:/doi.org/10.7498/aps.71.20212380

=T R Dicke SR P AR = AA 21 98 5 )y o
The dynamics of the bipartite and tripartite entanglement in the three—qubit Dicke model
YrHE2E4E. 2021, 70(4): 040301 https:/doi.org/10.7498/aps.70.20201602

i g — D e b1 PR R GT Y I Ao
Self-testing criteria for preparing—measuring qubit system

YIBR2A 4. 2023, 72(10): 100303 hitps:/doi.org/10.7498/aps.72.20222431


https://wulixb.iphy.ac.cn
https://doi.org/10.7498/aps.73.20240454
http://wulixb.iphy.ac.cn
https://doi.org/10.7498/aps.70.20210850
https://doi.org/10.7498/aps.72.20222248
https://doi.org/10.7498/aps.71.20212106
https://doi.org/10.7498/aps.71.20212380
https://doi.org/10.7498/aps.70.20201602
https://doi.org/10.7498/aps.72.20222431

	1 引　言
	2 二元耦合网络模型
	3 理论分析框架
	4 理论和仿真分析
	4.1 RR BINNEC结果分析
	4.2 ER BINNEC结果分析
	4.3 SF BINNEC结果分析

	5 度分布的影响
	6 结　论
	参考文献

