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磁流变弹性体在振动控制领域展现出巨大的潜力, 但其磁致力学性能的测量过程往往需投入较高的人

工与时间成本. 本研究旨在利用机器学习方法在小样本试验数据驱动下实现磁流变弹性体磁致力学性能的

快速准确预测. 基于加装可控磁场的剪切流变仪测试了磁流变弹性体 (9种配比, 4种加载频率)的磁致储能

模量. 每种样品取 5个测试点作为训练集并搭建支持向量回归机器学习模型, 从而表征磁流变弹性体的磁致

储能模量. 结果表明, 相较于典型的理论模型, SVR模型仅使用 5个样本点即可更准确表征磁流变弹性体磁

致储能模量 , 相关系数高达 0.998. 另外 , SVR模型训练时间仅为 0.02 s, 可显著加速磁流变弹性体表征的进

程. 更重要的是, SVR模型具有良好的泛化性, 对于不同硅油配比和不同加载频率的磁流变弹性体预测结果

的相关系数仍可达 0.998 以上. 因此, 机器学习模型可实现磁流变弹性体磁致储能模量的快速准确表征, 为

新型磁流变材料的研发提供参考.
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1   引　言

磁流变弹性体 (magnetorheological elastomer,

MRE)作为一种智能材料, 可依靠外部磁场强度的

变化来控制其流变 [1,2]、机械 [3,4] 和电气 [5] 特性, 并

具有响应速度快、可逆性好等性能 [6]. MRE作为刚

度可调的弹性元件可有效拓宽减振装置的减振频

带, 已在建筑隔振 [7]、汽车悬架 [8] 以及声子晶体 [9,10

] 等领域得到广泛应用. MRE减振装置的卓越振动

控制性能, 依赖于 MRE的磁致力学性能, 即其力

学性能随磁场变化的响应特性. 因此, 建立高效的

MRE磁致力学性能模型以准确快速地表征 MRE

的力学性能与磁场强度间的映射关系, 对于 MRE

的工程应用具有重要意义 [11,12].

目前对 MRE磁致力学性能的研究主要有理

论模型与实验测试两方面. 理论模型方面, 研究者

从微观和宏观两个尺度建立 MRE磁致力学性能

的理论模型. 微观层面, Jolly[13] 根据MRE中铁磁

颗粒的链状结构, 假设铁磁颗粒为理想的偶极子,

考虑相邻两个偶极子间的相互作用, 建立了磁偶极

子模型来表征剪切模式下 MRE的磁致力学性能.

后续有学者对磁偶极子模型进行了改进以表征

MRE的磁致力学性能, 典型的模型有: 体心四方

结构模型 [14]、双模态粒子链的 MRE模型 [15] 以及

正则矩形晶格模型 [16,17]. 然而, 微观模型注重铁磁

颗粒之间的磁力, 而简化了基体以及添加剂对MRE

力学性能的影响. MRE作为一种刚度可调的黏弹
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性材料, 实际应用中往往从宏观层面建立数学模型

对其磁致力学性能进行表征. 当前的研究主要通过

弹性元件和黏性元件的不同组合来反映 MRE的

磁致力学性能, 典型的模型有: 四参数模型 [18]、双

锯齿连模型 [19] 以及局部分数阶导数四参数模型 [20].

然而, MRE的宏观数学模型未能考虑 MRE内部

微观机理, 且大都是基于大量实验样本来确定待定

参数 , 因此其泛化性往往受到限制 . 总之 , 当前

MRE磁致力学性能的理论模型仍受到限制 , 当

MRE变形较大、加载频率较高以及磁场范围较宽

时, 其精度将有所下降.

相较于理论模型, 试验测试方法可以更直观地

描述MRE的磁致力学性能. Chen等 [21] 制备了几

种不同质量分数的各向异性炭黑磁流变弹性体, 并

利用动态机械分析仪和电子拉伸机测试了其磁致

力学性能. Li等 [22] 采用加装可调磁场的剪切流变

仪测试了磁场强度、应变、频率等因此对 MRE的

磁致力学性能的影响. Ahmad Khairi等 [23] 使用加

装电磁线圈的剪切流变仪测试了不同硅油含量对

磁流变弹性体磁致力学性能的影响. 根据测试结

果, 硅油含量越大, MRE的初始剪切模量相对减

小而磁流变效应增加. Gowda和 Odenbach[24] 对

剪切流变仪进行改装并测试了温度对 MRE磁致

力学性能的影响. 在MRE磁致力学性能的测试过

程中, 通常在较宽的磁场范围内采样多个测试点.

因此, 通过试验的方式来确定MRE的磁致力学性

能往往需要大量的时间和人工成本.

近年来, 机器学习已广泛应用于材料科学领

域, 其性能在表征复杂的非线性关系上随着数据增

长越发优异 [25–27]. Goodall等 [28,29] 基于深度学习来

提取材料的表征向量, 并成功预测了未知的新材

料. Bessa等 [30] 开发了一种新的数据驱动计算框

架, 以辅助研究人员进行结构设计, 并使用机器学

习来替代经验本构模型. Clément等 [31,32] 证明了

数据驱动的机器学习框架可用于确定非线性弹性

材料的本构关系.

在材料力学性能表征领域, 已经有许多研究基

于机器学习来表征材料的力学性能 [33–35]. Li等 [36]

基于机器学习方法, 建立了非均质材料有效力学性

能与其尺度结构之间的隐式映射, 并证明机器学习

模型能准确预测材料的弹性模量. Liu等 [37] 通过有

限元法获取训练样本并设计机器学习模型对多孔

材料的弹性模量进行表征. El Said等 [38] 基于深度

循环卷积网络准确地表征了复合材料的储能模量.

Li等 [39] 提出了一种基于力学的机器方法来预测纤

维增强复合材料的力学性能. 然而, 机器学习技术

在使用 MRE的测试数据加速其磁致力学性能表

征方面尚未得到充分研究. 当机器学习模型得到有

效的训练, 就可快速、准确地表征 MRE的磁致力

学性能.

为了解决当前 MRE磁致力学性能的理论模

型泛化性差以及测试成本高的问题, 本文以剪切模

式下 MRE为例, 提出了基于机器学习模型来快

速、准确地表征MRE的磁致力学性能. 首先, 制备

了不同铁磁颗粒含量以及不同硅油含量的 MRE

样品, 并在不同加载频率下测试其储能模量随磁场

的变化. 其次, 回顾了磁偶极子模型以及黏弹性宏

观模型并分析了其在表征 MRE储能模量的不足.

然后, 搭建了支持向量回归 (support vector regres-

sion, SVR)机器学习模型在小样本试验数据的驱

动下来表征MRE样品的磁致储能模量. 测试结果

表明, 所提出的机器学习模型可以更准确地表征

MRE磁致储能模量. 

2   MRE制备与性能测试
 

2.1    MRE 制备

MRE由 3种原材料制备: 羰基铁颗粒、聚二甲

基硅氧烷及固化剂、硅油. 羰基铁颗粒的粒径为 6

μm, 其由德国 BASF公司提供 . 聚二甲基硅氧烷

(Sylgard 184型)和匹配的固化剂由美国的道康宁

公司提供. 如图 1所示, 各向异性MRE的制备过程

主要包括 3个步骤: 首先, 将 3种原料按一定比例混

合并搅拌均匀. 其次, 将该混合物置于真空箱中 30 min

以除去混合物内部的气泡并倒入模具中. 然后, 通过

电磁铁对样品施加磁通密度为 1200 mT的磁场使其

内部的铁颗粒形成链状结构. 最后, 将混合物置于加

热箱中, 在 90 ℃ 下固化 40 min. 同时, 仍对模具内

样品施加磁通密度为 1200 mT的磁场以维持铁磁颗

粒在基体中的链状结构. 

2.2    MRE 性能测试实验

MRE的工作模式主要有压缩和剪切两种

形式, 本文以剪切形式的 MRE为例来测试 MRE

的储能模量 .  MRE样品的尺寸为直径 20 mm,

厚度 2 mm, 如图 2(a)所示. 不同 MRE样品在不
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同磁场下的储能模量的测量如图 2(b)所示 , 施

加的测试磁场平行于样品的厚度方向, 即内部颗粒

链的方向. 不同原料配比的 MRE的测试方案见

表 1.

测试时施加 10 N的法向力以夹紧样品, 可控

磁场的强度变化范围为 0—1000 mT, 为了准确表

征 MER的储能模量, 每 10 mT记录一个测试点

的储能模量, 每个样品共包含 100个测试数据点如

图 3所示. 

2.3    MRE 本构模型

MRE储能模量的理论模型有基于磁偶极子的

微观模型与基于黏弹性模型的宏观模型, 如图 4所

示. Jolly等 [13] 研究平行链中球形颗粒的磁力学特

性提出磁偶极子模型, 通过磁偶极子间能量相互作

用关系, 推导出MRE的储能模量如 (1)式:
 

G =
ϕJ2

p

2µ0µ(d0/d)
3 , (1)
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图 1    MRE制备流程

Fig. 1. Preparation process of MRE.
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图 2    MRE的磁致储能模量测试

Fig. 2. Magnetic storage modulus test of MRE.
 

表 1    MER样品配比及测试工况
Table 1.    Ratio and testing conditions of MRE.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

铁磁颗粒/% 12 15 18 21 24 27 27 27 27 27 27 27

硅油/% 5 5 5 5 5 5 0 10 15 5 5 5

加载频率/Hz 75 75 75 75 75 75 75 75 75 30 60 90
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图 3    不同MRE样品的测试结果　(a)不同铁颗粒含量; (b) 不同硅油含量; (c) 不同加载频率

Fig. 3. Test results of different MRE samples: (a) Different iron particle content; (b) different silicon oil content; (c) different load-

ing frequencies.
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ϕ

Jp µ0 µ

d0

式中, G 为 MRE的剪切储能模量,    为铁磁颗粒

体积分数,   为单位颗粒体积磁偶,   ,   分别为

真空磁导率和介质相对磁导率,    为链中相邻颗

d粒中心距,   为颗粒直径.

Li和 Zhang[15] 对上述磁偶极子模型进行改善,

提出了双模态粒子链模型如 (2)式: 

 

∆G =



56.53ϕµ0H
2
0(

9µH0 + 9− 6.28

1− s

)2 , s ⩽ 23.2%

(73.64s− 17.12)ϕµ0H
2
0

(9µH0 + 2.72)
2 +

0.908 (1− s)ϕµ0H
2
0

(µH0 + 0.091)
2 , s > 23.2%

(2)

∆G H0式中,   为剪切储能模量的变化量,   为磁场强

度, s 为颗粒体积分数.

MRE 是一种典型的黏弹性材料, 基于弹簧、

阻尼器等元件建立数学模型对其复杂的力学行为

进行表征. Feng等 [20] 根据 MRE基体黏弹性行为

和磁致模量的变化, 引入黏弹性分数阶导数模型,

给出了 MRE参数模型的复数模量如 (3)式, 储能

模量如 (4)式, 损耗模量如 (5)式: 

Y (ω) = Y1(ω) + iY2(ω), (3)
 

Y1(ω) = Em + E0

[
1 + T βωβ cos (βπ/2)

]
, (4)

 

Y2(ω) = E0T
βωβ sin (βπ/2) . (5)

Y1(ω) Y2(ω)

ω Em

E0

β

式中,   和  分别为存储模量和损耗模量,

i为虚数单位,   为角频率,   为非线性弹簧元件

的磁致模量,   为弹簧元件的弹性模量, T 为 VFD

元件中表征特征时间的参数,   为分数阶导数.

微观模型在建模时存在许多假设, 微观模型将

铁磁颗粒链简化为理想的直线链并且未能考虑多

条颗粒链之间的相互作用力. 而宏观模型未能表示

颗粒间距、铁磁颗粒尺寸等微观机理. 这就导致了

理论模型无法准确描述 MRE的储能模量. 因此,

本文提出使用 SVR模型来表征MRE的储能模量.

另外, 考虑到磁场强度 600 mT以上 MRE的储能

模量趋近饱和, 采用带二阶线性项的对数模型描

述MRE的储能模量作为对比组. 

y = b1 logx+ b2x
2 + b3x+ b4, (6)

式中, y 为 MRE的储能模量预测值, x 为磁场强

度, b1, b2, b3, b4 为待定系数, 根据 (7)式采用最小

二乘法确定: 

min
b1,b2,b3,b4

n∑
1

(yi − y∗i ), (7)

yi

y∗i

式中,   为带有二阶线性项的对数模型对第 i 个样

本点的预测值,   为第 i 个样本点的测试值. 

3   机器学习预测模型
 

3.1    SVR 模型

SVR非常适合处理小样本非线性回归问题,

并且对于异常值具有较好的鲁棒性. 因此, 采用 SVR

模型来预测MRE的磁致储能模量.

SVR的基本原理如图 5所示 , 即寻找一个

最优的超平面, 使得样本点到该超平面的距离最

小. 为了提高 SVR模型的泛化能力并避免过拟合,
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图 4    典型的MRE力学模型　(a) 微观磁偶极子模型; (b) 宏

观黏弹性模型

Fig. 4. Typical  mechanical  model  of  MRE:  (a)  Microscopic

magnetic dipole model; (b) macroscopic viscoelastic model.
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图 5    SVR 模型机制

Fig. 5. Mechanism of SVR model.
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ξ引入松弛变量   和惩罚刚度 C 后, SVR的目标函

数如下: 

min
w,b,ξi,ξ̂i

1

2
||w||2 + C

n∑
i=1

(ξi, ξ̂i)

s.t. f(xi)− yi ⩽ ε+ ξi,

yi − f(xi) ⩽ ε+ ξ̂i,

ξi ⩾ 0, ξ̂i ⩾ 0, i = 1, 2, · · · , n,

(8)

1/2||w||2

ξi ξ̂

yi

w b ε

式中,    为超平面到支持向量的距离的倒

数, C 为惩罚刚度;   与  为松弛变量, 分别代表样

本点到上、下边界的距离;   为第 i 个数据的真输

出值,    为权重项,    为偏差项,    为容忍偏差, 是

一个由人工设定的经验值. 通过最小化总损失和最

大化间隔来求解优化后的模型参数. 另外, 基于高

斯核函数如 (10)式, 建立 SVR模型以对 MRE磁

致力学性能进行预测: 

f(x) =

n∑
i=1

(
⌢
αi − αi)κ(x, z) + b, (9)

 

κ(x, z) = exp(−γ||x− z||2), (10)

κ(x, z) γ式中,   为高斯核函数,   核函数为超参数. 

3.2    机器学习模型的超参数设置

在当前的研究中, 开发了 SVR机器学习模型

表征MRE的储能模量. 模型的超参数设置如下.

SVR 模型: 采用高斯核函数, 核函数参数g =

0.1, 惩罚刚度 C = 5.

所有模型都在基于 Windows 10×64 Profes-

sional的 PyCharm v2020构建的 Pytorch1.11环

境中运行. 实验处理器为 NVIDIA 2060 GPU, 内

存为 12 GB. 

3.3    预测结果的评价标准

均方根误差 (root mean squared error, RMSE)

是一种用于衡量预测模型在连续性数据上的预测

精度的指标. RMSE衡量的是预测值与真实值之

间的偏差 , 并且对数据中的异常值较为敏感 .

RMSE的值越小, 代表 SVR模型的预测值与试验

测量值之间偏差越小, 即模型预测效果越好. R2 用

于评估 SVR模型与测试值之间拟合程度, R2 越大

表示模型对MRE储能模量的预测效果越好. 为了

量化模型的预测精度, 引入 RMSE与 R2 如 (11)式

和 (12)式: 

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2
, (11)

 

R2 = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(ȳ − ŷi)
2

, ȳ =
1

n

n∑
i=1

yi, (12)

yi

ŷi ȳ

式中, N 为测试集数据个数,   为通过实验测试获

取的真实值,   为模型的预测值,   为真实值的平

均值. 

4   实验结果
 

4.1    训练集数据

为了节省测试时间, 在保证预测结果准确的前

提下使用尽可能少的样本表征 MRE的磁致储能

模量是至关重要的. 分别从每个样品的 100个测试

点中等间距取 4, 5, 10, 20个测试点作为训练集,

剩余作为测试集, 采样过程如图 6所示. 标号为 S6的

MRE样品羰基铁颗粒的含量为 27%, 该 MRE样

品具备最高的磁流变效应, 且应用范围最广泛. 使

用不同训练样本量的 SVR模型预测 S6样品的磁

致储能模量见表 2.

由表 2可知, 当训练集的数据量大于 5个时,

训练集与测试集的 R2 均高于 0.998. 然而, 当测试

集的数据量为 4时, R2 降低至 0.878. 同时, 相较于

数据量大于 5个的训练集, RMSE扩大了约 10倍.

 

4个训练样本点
0 mT 330 mT 660 mT 1000 mT

0 mT

100 mT

200 mT 1000 mT

10个训练样本点 训练样本
测试样本

0 mT 250 mT 500 mT 750 mT 1000 mT

50 mT

0 mT 100 mT 1000 mT

5个训练样本点

20个训练样本点

图 6    训练集采样过程

Fig. 6. Sampling process of training set.
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上述试验结果表明, 训练集中至少需要 5个数据点

来准确地表征 MRE的磁致储能模量. 因此, SVR

模型采用 5个测试点作为训练集. 

4.2    不同模型的表征结果

基于 S6样品的测试结果验证机器学习模型表

征MRE储能模量的准确性. 为了进一步验证机器

学习模型的优越性, 将其预测结果与前述的磁偶极

子模型、黏弹性模型以及对数模型的预测结果进行

对比如图 7所示.

图 7为机器学习模型与理论模型对 MRE磁

致储能模量表征的对比. 由图 7(a)可知, 根据试验

测试结果, 当磁通密度为 600 mT时, MRE的储能

模量达到饱和. 然而, 当磁场 120 mT时, 使用磁偶极

子模型确定MRE储能模量达到饱和, 即 1.43 MPa,

这与试验测试数据误差较大. 造成这种现象的原因

是磁偶极子模型假设羰基铁颗粒在基体中为理想

的直链, 且多用于应变小于 0.1%的工况下. 在磁通

密度小于 350 mT时, 黏弹性模型的预测结果高于

真实值. 在磁通密度小于 350 mT时, 黏弹性模型

的预测结果小于真实值. 另外, 黏弹性模型的预测

结果并没有出现储能模量随磁通密度的增加而饱

和的趋势. 根据图 7(b)可知, SVR模型的预测值

与测试值的相关系数为 0.998, 说明使用 SVR机器

学习方法可准确表征MRE磁致储能模量. 

4.3    机器学习模型的泛化性验证

添加剂 (如硅油)可以有助于铁磁颗粒均匀分

布于基体中来有效提高 MRE的磁流变效应. 另

外, 实际应用时, 基于 MRE设计的半主动振动控

制装置往往工作在不同频率下. 因此, 在加入添加

剂以及较宽的频率范围内 MRE预测模型仍能准

确预测 MRE的磁致模量更具实际工程意义. 然

而, 多数理论模型未能考虑添加剂的影响且应用范

围限制在一定的频率内. 本节为验证 SVR机器学

习模型的泛化性, 基于黏弹性模型、对数模型以及

SVR机器学习模型对表 1中 12种 MRE样品 (不

同硅油含量 0—15%以及不同加载频率 30—90 Hz)
的储能模量进行训练并测试. 磁偶极子模型在磁场

较高时预测误差很大, 为了突出其他模型预测结果

之间的对比, 不考虑磁偶极子模型的测试结果. 黏

弹性模型、对数模型以及 SVR机器学习模型表征

12种 MRE样品的磁致储能模量的 RMSE如图 8

所示.

 

表 2    不同模型对 S6样品的预测结果
Table 2.    Prediction  results  of  different  models  on

S6 sample.

训练样本数量 4 5 10 20

train R2 0.999 0.999 0.999 0.999

test R2 0.878 0.998 0.998 0.998

RSME 0.112 0.0125 0.0133 0.0111
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图  7    不同模型对 MRE磁致储能模量的表征　(a) 磁偶

极子模型与黏弹性模型; (b) SVR模型与对数模型

Fig. 7. Characterization  of  MRE  magnetic  induced  storage

modulus by different models: (a) Magnetic dipole model and

viscoelastic model; (b) SVR model and logarithmic model.
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图 8    不同模型对不同样品预测的 RMSE

Fig. 8. RMSE  predicted  by  different  models  for  different

samples.
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由图 8不同模型对于 12种样品的预测误差可

知, 基于黏弹性元件的宏观模型误差较大, 这是由

于黏弹性模型未能表征MRE的微观结构, 例如铁

磁颗粒的排列以及铁磁颗粒直径大小. 相较于对数

模型, SVR模型表征 MRE储能模量的 RMSE更

小. 这是由于 SVR模型适合处理小样本非线性数

据. 另外, SVR可以通过核函数将数据映射到高维

空间中, 从而更好地利用数据之间的相似性, 从而

提高模型的泛化能力.

为了进一步观察机器学习模型的表征结果,

选取 SVR模型与磁偶极子模型、黏弹性模型、对数

模型对比并绘制预测结果的相关系数 R2 如图 9

所示.

由图 9(a)可知, 对于铁磁颗粒含量不同的样

品, SVR模型具有最高的 R2, 均达到了 0.998. 由

图 9(b)可知, 黏弹性模型与对数模型预测 S8与

S9样品的储能模量的 R2 约为 0.96. 随着硅油含量

的增加将导致理论模型预测精度降低, 这是由于理

论模型建模时未能考虑硅油的影响. 然而, SVR模

型预测结果的与真实值的 R2 仍然可达 0.998. 另

外, 当加载频率变化时, SVR模型的 R2 仍保持最

高. 这说明 SVR模型表征 MRE储能模量具有优

异的泛化性.

为了直观观察基于 SVR表征不同 MRE的储

能模量结果 . 将 S1—S12共 12种样品均在 SVR

模型进行训练并测试. SVR模型表征 MRE磁致

储能模量的预测值与真实测试值对比如图 10所

示, RMSE与 R2 见表 3.

由图 9(a)可知, 随着铁磁颗粒的增加, MRE

的初始储能模量增大. 另外, 随着铁磁颗粒含量的

增大, MRE储能模量达到饱和时的磁通密度也随

着增大. 这是由于要磁化更多的铁磁颗粒就需要更

大的磁通密度. 图 10(a)可知, SVR可以对不同铁

磁颗粒含量的 MRE的磁致储能模量实现准确的

表征. 随着硅油含量增大, MRE的初始储能模量

降低且磁流变效应显著提高. 这是由于硅油的加入

使得铁磁颗粒在基体中分散更加均匀且更容易形

成磁链. 由图 10(b)可知, SVR模型对不同硅油含

量的 MRE在不同磁场下的储能模量进行有效的

表征. 由图 10(c)可知, 随着加载频率的增大, MRE

储能模量增大, 且在不同加载频率下, SVR模型均

可准确表征MRE不同磁场下的储能模量.
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图 9    不同模型对不同样品 R2 的对比　(a)不同铁颗粒含量; (b)不同硅油含量以及不同加载频率

Fig. 9. Comparison of different models on R2 of different samples: (a) Different iron particle contents; (b) different silicon oil con-

tents and loading frequencies.
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图 10    SVR模型对不同MRE样品的预测结果　(a)不同铁颗粒含量; (b) 不同硅油含量; (c) 不同加载频率

Fig. 10. Prediction results of SVR model for different MRE samples: (a) Different iron particle content; (b) different silicone oil con-

tent; (c) different loading frequencies.
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关于MRE的典型的数学模型有: 磁偶极子模

型 [13]、动态黏弹性模型 [40]、四参数分数阶导数黏弹

性模型 [20]、动态磁力学模型 [41]、三参数本构模型

(Maxwell形式)[42]、渗透模型 [15]、Ramberg-Osgood

模型 [43]、修正 Kelvin-Voigt黏弹模型 [44]、自适应光

滑库仑摩擦模型 [45]、修正 Bouc-Wen模型 [46]、非线

性流变模型 [47]. 上述模型与 SVR模型的表征结果

见表 4.

 
 

表 4    不同模型对 S6样品的预测结果
Table 4.    Prediction  results  of  different  models  on

S6 samples.

模型 磁场范围/mT R2

磁偶极子模型 0—1000 0.836

动态黏弹性模型 0—326 0.93

四参数分数阶导数黏弹性模型 0—150 0.97

动态磁力学模型 90—178 0.99

三参数本构模型(Maxwell形式) 125—540 0.958

渗透模型 0—375 0.9

Ramberg-Osgood模型 0—500 0.9

修正Kelvin–Voigt黏弹模型 0—272 0.93

自适应光滑库仑摩擦模型 — 0.92

修正Bouc-Wen模型 0—545 0.9

非线性流变模型 0—330 0.98

SVR模型 0—1000 0.998

 

通过 SVR模型与文献中 11种理论模型的对

比可知, SVR模型的 R2 最高为 0.998. 这说明 SVR

模型相较于其他理论模型, 可以更准确地表征MRE

的磁致模量. 尽管动态磁力学模型的 R2 也达到了

0.99, 但其适用的磁场范围较窄 (90—178 mT). 除
此之外, 四参数分数阶导数黏弹性模型与非线性流

变模型的 R2 也相对较高 , 分别达到了 0.97与

0.98, 但二者适用的磁场范围同样是有限的. 一般

来讲, 在磁场强度约 600 mT时, MRE的磁流变效

应达到饱和. Ramberg-Osgood模型与修正 Bouc-

Wen模型适用的磁场范围达到了 500 mT, 但二者

表征 MRE的磁致模量准确率较低, R2 仅为 0.9.

SVR模型的磁场的适用范围为 0—1000 mT, 能够

在 MRE发生磁流变效应的整个磁场范围内准确

表征MRE的磁致模量.
 

5   结　论

本研究旨在小样本试验数据驱动下基于机器

学习模型实现MRE磁致力学性能的准确表征. 制

备了不同原料配比的 MRE, 以剪切模式下储能模

量为例, 在 0—1000 mT磁场下以不同频率下测试

其磁致储能模量. 进一步, 构建了 SVR机器学习

模型, 并仅使用 5个测试样本点实现了MRE的磁

致储能模量的准确表征. 研究发现, 相较于微观尺

度的磁偶极子与宏观尺度的黏弹性模型, SVR模

型表征MRE磁致储能模量的精度最高, 相关系数 R2

达到了 0.998以上. 另外, SVR模型具有很强的鲁

棒性. 对于 MRE的硅油含量达到 15%以及加载

频率为 90 Hz的极端工况下, 传统的模型预测精度

显著降低, 而 SVR模型仍以相关系数 0.998来准

确描述其储能模量. 值得注意的是, 机器学习模型

可显著加速MRE性能的表征. 相较于常规的方法

使用 50个测点表征 MRE磁致储能模量, 机器学

习模型仅使用 5个样本即可完成准确的表征. 通过

试验测试一个MRE样品需 30 min, 而使用 SVR模

型表征其磁致力学性能时间显著减少, 仅为 0.02 s.

最后, 将 SVR的预测结果与近年来优异的 MRE

理论模型进行对比, SVR可在 0—1000 mT磁场

范围内准确地表征MRE的磁致模量.

值得关注的是, 提出的方法可以轻松地推广到

其他力学和物理性能研究领域. 基于机器学习对磁

流变弹性体材料压缩模量、宏观破坏强度以及温度

对其力学性能的影响将在未来的工作中进行讨论. 另

外, 机器学习模型为MRE的研究和设计提供了一种

强大的工具, 为新型磁流变材料的研发提供参考.

 

表 3    基于 SVR模型预测不同MRE样品的RMSE

与 R2

Table 3.    Prediction  of  RMSE and R2  for  different

MRE samples based on SVR model.

样品 RMSE R2

S1 3378 0.999

S2 5006 0.999

S3 4246 0.999

S4 6671 0.998

S5 8579 0.999

S6 8669 0.998

S7 2275 0.999

S8 6547 0.999

S9 3630 0.999

S10 17122 0.998

S11 12642 0.998

S12 10409 0.998
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Abstract

Magnetorheological elastomers (MREs) are smart materials with a wide range of applications, particularly

in reducing vibrations and noise. Traditional methods of testing their magnetically-induced properties, although

thorough,  are  labor-intensive  and  time-consuming.  In  this  work,  we  introduce  an  innovative  method  that

harnesses  machine  learning  to  rapidly  characterize  MREs  by  using  a  smallest  dataset,  thus  simplifying  the

characterization  process.  Initially,  12  types  of  MREs  are  prepared  and  tested  on  a  shear  rheometer  with  a

controllable  magnetic  field.  From these  data,  we strategically  select  five  representative data points  from each

sample to form a training dataset. Using this dataset, we develop a support vector regression (SVR) model to

characterize  the  magnetically-induced  storage  modulus  of  the  MRE.  The  SVR  model  exhibits  remarkable

accuracy, with a correlation coefficient (R2) of 0.998 or

higher,  exceeding  the  precision  of  traditional  models.

The training time of this model is very brief, only 0.02

seconds,  thus  greatly  accelerating  the  characterization

speed of MRE. Moreover, the SVR model demonstrates

strong  generalization  ability,  maintaining  a  high

correlation  coefficient  of  0.998  or  greater  even  when

silicone  oil  is  added  to  the  MREs  or  tested  under

various  loading  frequencies.  In  a  word,  the  machine

learning  model  not  only  accelerates  the  evaluation

process  but  also  provides  a  valuable  reference  for

developing  innovative  MREs,  marking  a  significant

advancement in the field of smart materials research.
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