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Fig. 1. Measured hysteresis loops of 30 keV Ga* irradiated Pt/Co/Pt structures at different doses, and the dependence between
remanence and irradiation dosel?: (a) Non-irradiated (N.L); (b) 4x10™ ions/cm?; (c) 2.5x10' ions/cm?; (d) 6.25x10' ions/cm?;

(e) 8.75%x10% ions/cm?; (f) relationship between the normalized remnant magnetization and Ga* ion fluence.
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Fig. 2. Ion irradiation-assisted preparation of structures with uniaxial anisotropy or easy cone anisotropy. (a), (b) Dependence of the
out-of-plane angle of the resonance field of the Pt/Co samples with the spacer layer of W, Ta irradiated by different dosel’; (c)—(f)
the process of controlling the angle between the applied magnetic field and the direction of Ar* irradiation to form a uniaxial aniso-
tropy in a Co/Pt structure; O stands for unirradiated. B stands for a dose of 10! ions/cm?, * stands for 10" ions/cm?, A stands
for 3x10% ions/ cm?, @ represents 3x10 ions/cm?, the upper left panel shows a schematic diagram of the experimental setup for

field-assisted ion irradiation; 1 represents the unirradiated area, 2 represents the irradiated areal'.
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Fig. 3. Ion irradiation modulates the exchange bias field size and orientation: (a) Variation in the exchange bias field with time after

irradiation at different dosesY M represents unirradiated, 4 represents irradiated dose of 10'3 ions/cm?, A represents an irradi-

ation dose of 10™ ions/cm? @ represents an irradiation dose of 10'% ions/cm? [*}; (b) ion irradiation changes the pinning direction of
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136101-5


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

) 32 2 3R Acta Phys. Sin. Vol. 73, No. 13 (2024) 136101

TERRME / ARG A w7 BRI ESF T FHARERIE )2 255
e rh ARG 428 )2 F e BE Y Friedel-like %5 [H] 4
Vi, MR G 1 B IERE B R ke 23 (AR &R 4l 2 4%
&, ARG 1R 23 G PR 2 2 B s 1) el A i ™
ARG, BIBEE ARG 4 )8 )2 82 B2 g hn, J2 1]
MG E B SRREYE (BOPATHED) Figkmg
PE CPATHES) MESIE S, (BGRB8 i
REEARR 61, IR AR, AT T N T s ket 4h
F, 2R A SRR EE /N P HRE R | IR
FE M = FREAR BN 12 A R, R T T A e
JEE IR TRHA B A 1 —Fh ERAERDRL. 1T B8 4 IR
YRR —Fh T B, AT LU i AN [R) )
FRAS AR SR REME M R AR B R RKKY A
BRI TR BUREE W R A B 0, A B T
% h B AR Y RE T E W R AR

1F Yun %567 F1 Blomeier %568 iff25 1, 3 MeV
FetHl 30 keV Gatlsiss | B ML /AR0E 6 I8 /2R i 45
oy TR SRR 2 B LR A% ) S S 2 [R) Y
BRMERR Ao B L PR B - e AR P AR AR ST
e, BT HRRE)Z AERE)E S, 2 s

1.0} -
05} s 2
OFf 4
705 L
~1.0

5

M. /arb. units

—-14-7 0 7 14
H./(10% Oe)

200 pm

®z 10f —
1
0.5 3 )
—.
OF 4a -
| e—
—0.5F |T'
—lOfp—-
“14-7 0 7 14 1 200 ym
H./(10% Oe)
10f '—1
0.5 S ,
of 4 "
705 L
~1.0 —I e ‘ G .
—14-7 0 7 14 : -~ 1 200 im
H./(10? Oe)

1.0} 2

o5l K
ol 3

—0.5 y

—1.0

—14-7 0 7 14 5N pm ‘ 200 pm
H./(102 Oe) : —

M. /arb. units

M. /arb. units

(d)

M. /arb. units

THEE R FEREAE Yun 55 67 B9 TAE, FRE
AT Y B 7K F BEL I A 4 R e RS 8 ),
A T S AT A R B R, 453X — I AR
AR Fetxf b P R Bk 2 1 1 S R
AN T34k, Fer () BRATRERE 1) B LA X spin-
flip % 2% 4 spin-flop, 41& 4(a)—(d) Fra~. 24
i, —SERFFEE R 35 keV Gatl69, 4.5 keV Het™],
9 keV Hetl™, 17 keV Ne*[™ 7E 0—1x 100 ions /cm?
FIEJEFE PN T Co/Mo/Co F1 Co/Ru/Co £ 2
JEEA5H, SEBL T MERE R B X SN S R R & B Bk
WERR A HOFE S, JFTERR B X3 1 S BRmdms .

B T BRARZ MG SR AN, TER AR D B
T4 FROA T DU K R R RE R A 3R . Quirds 45 [
A Hoink %5 ™ 20 5 F) ] 1 keV Art, 10 keV Het
IR N T RREAA L S F eI 454, A 35 3
KT SUCBRREAS & 0 P . I DR S Aol KA B2 4 1
SITE JRy BRI AR R DX, TR W /AR W DX i R Ak
T E AR AR B JHRRE T RCERREHES), MATITHE K
T RS R

25 L RTIE, A RIS AR BE S

200 pm 200 pm
 —— —

; 200 pm 200 pm 200 pm
 — — —

200 pm i 200 pm : 200 pm
I

200 pm

200 pm 200 pm
—

4 ORTFF A 3 MeV Fetfi BN TR Bk WG #E & 5 1Y RET 101 8 5 R4 E 407 (a) 0 ions/cm?; (b) 0.5x10% jons/cm?; (c) 1.1x

10" jons/cm?; (d) 1.7x10 ions/cm?

Fig. 4. Hysteresis loops and domain morphology of 3 MeV Fe* irradiated artificial antiferromagnetic samples under different doses!®7:
(a) 0 ions/cm?; (b) 0.5x10' ions/cm?; (¢) 1.1x 10" ions/cm?; (d) 1.7x10' ions/cm?
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FHICECR B i He M IR, 51 201 4R IR T e 23
ELEE NGRS | FER DM AHEAEH L 98/ NBEREZ 5
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FETHR 1S B — Kk Co EHFEIX, S 2R H G
2 ) SRR ET LA A8 B B3, 2 i a )Nk
BEIZ Z 3 BE . T Herrera Diez 45 B0 ARKAR 45 T
AL 15 keV He™, I7E 1x10'%—3x 10" ions/cm?
A5 VS Bl 4R IR Ta/CoFeB/MgO %514, S5
RN, 5E IRS G WERE I L 5T LIS TE 0—6%10™8
ions/cm? YW P, WEREIZ Bl B A SR K (H7E
B R, FTFLSA AR K, W RE 12 B B 1S
XFH Herrera Diez 2550 5 Van Der Jagt 25170 )5
g Al LIAs A RS AT RE & Y B 7E AN ] 5]

o i + + + +
0.28
% Ta/CoFeB interface
0.24 F +
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Irradiation dose/(10'® Het m~2)

(a) AN A5 5t Het#ii i Ta/CoFeB/MgO 454 J5 , DW i3 B 5 M ms & i s EOC R, DL 51 53—56 mT B, A a4 #]

A B W BE 12 Bl BE K/ P9 () Ta/CoFeB S 52 BE 15 48 I 7R 4 22 [ it 465 B 56 2R (7
Fig. 5. (a) DW velocity as a function of applied magnetic field after irradiating the Ta/CoFeB/MgO structure with different doses

of Het and the magnitude of the domain wall motion velocity at different irradiation doses when the external field is 53-56 mT([™;

(b) the lower part shows the correspondence between the width of the Ta/CoFeB interface and the irradiation dose™.
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JE . X BB R AT LARRAIE SOT #4 f) Bi vl
T I H SRR R S B . A, B R
TR 5 1) 22 G mil A B i 2 1T LA SR B U o 2828
fib A AR Ak, A RN T N TR 2% 186) 153,
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7R, TE 0—9.375% 10" ions/cm? F| L B Y, &1
IR SOT #8440 I 53t B0 e miL 18 2% 182 43 Sl B 1K
T 30.3%, 82%, 35%. IIffi 5t oH 7t hL i 2% B R AT 1) S
PRS2 B T4 BB SS T SOT #%14 h 3 1 4 4% ) S
P, RIS K T E 4R Z M AEE /R M. [ 6(a)—
(f) F1E 1 JB/R T 30 keV HetHi I Pt/Co/W %54
Jei , FH ORI 2 85 % B P i 5 T
PR G 3R . E3 A 2 - M S B 2 S B 11
St He 251900 fi] 3 MeV FetfE 1.0x108—1.1x
10 ions/cm? | W HE T, 4818 T Co/Ru/Co 4
¥, 055 T IR E T R 1 S S R RS
SR, TR A REIRS Z Gh, SR TR T X FRpEm
i, SEIL TR AR, Lee 58 D1 20 keV Het
L 5, 15, 20, 25 1 30 ions/nm? HYFIRHH IR T #/K
TFALAHABY B P B, ITERE /R TR T
A FLREAS ) SRR FTRE T B i X B, SE T
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FENT M2, BATIE A S Dife i A
TRl e M EIE A RGN EEA Y. AT
58 il B ELAG AR S o 1k e B s L S S k]
AR MERE. TRERE 2 A B AR A Rl RS
FLRRELAT R ml LA SRASE B, I ik v ot 28 5 fh 1) A
A4k, Zhao % 92 ffifl] 15 keV He $iIE T HAA W/
CoFeB/MgO 4514 (1) 28 IR 5 #1432 i IR IX I

1 ABESEISNE kg PERENE 4 LU IR SR LU 2 52 B R B A A ML 7

Table 1.  Effective anisotropy ke, thermal stability 4, and critical flipping current as a function of irradiation dosel®”.
Dose/(ions-nm 2) kogi/ (kJ-m?) 4 p/(pQ-cm) I /mA I /mA Jo /(MA-cm ?) J& /(MA-cm 2)
0 537 133 214 -7.5 7.5 6.0 6.0
1 521 129 214 —7.5 7.5 -6.0 6.0
20 257 64 219 6.2 7.5 -5.0 6.0
30 153 39 224 -1.0 3.3 -0.8 2.7
30 38 9 235 — — — —
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Fig. 6. Ion irradiation of SOT device with Pt/Co/W structurel®”: (a) The grey area is the metal electrode of Hall Cross, the green

stripe indicates the magnetic multilayer film, the red pin probe is used to measure the Hall voltage while the blue probe is used to

apply the current; (b) variation of the anomalous Hall loops with the irradiation dose between 0-70 ions/nm?; (¢) the local irradi-

ation process schematic, with reduced local anisotropy due to mixing at the upper and lower Co/HM interfaces; (d) anomalous Hall

loop driven by in-plane field at selected doses labelled in panel (a); (e) the normalized magnetization intensity of irradiated and

unirradiated samples obtained from panel (d); (f) anisotropic field and Mg versus the irradiation dose.
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Fig. 7. He" irradiated prepared devices with anisotropy gradient and field free switching test!: (a) Optical microscope image of an

ion-irradiated GdCo device; (b) polar magneto-optical Kerr effect (p-MOKE) image of the dose-gradient pattern in the irradiated

GdCo device; (c¢) hysteresis loop of the GdCo device for different irradiation condition; (d) hysteresis loop in the irradiated region at

a dose of 25 ions/nm?; (e) current-induced magnetic moment flipping in presence and absence of the in-plane magnetic field (B,).
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repelled by the irradiated region during its movement, which will diminish the deflection!1%%,
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Abstract

Ton irradiation, a technology in which ion beams are used to irradiate materials, has high manipulation
precision, short processing time, and many applications in the fields of material modification, chip
manufacturing, biomedicine, energy and chemicals. Especially in magnetic material modification, customized
modifications of magnetic materials can be achieved by precisely controlling the energy, dose, and direction of
the ion beam. To further enhance the performances of magnetic materials and explore new magnetic devices,
this study focuses on how ion irradiation precisely modulates various magnetic interactions and the analysis of
its influence on the spin Hall effect and magnetic structural dynamics. Firstly, the latest research achievements
are emphasized of ion irradiation regulated magnetic characteristics such as perpendicular magnetic anisotropy,
exchange bias, and RKKY interaction. These regulation methods are crucial for understanding and optimizing
the microstructure and properties of magnetic materials. Secondly, the significant role played by ion irradiation
in regulating spin-orbit torque devices is discussed in detail. These applications demonstrate the potential of ion
irradiation technology in designing high-performance magnetic storage and processing devices. Finally, the
future applications of ion irradiation technology in the preparation of multifunctional magnetic sensors and
magnetic media for information storage are discussed, highlighting its great enormous innovation and

application potential in the field of magnetic materials.
Keywords: ion irradiation, magnetic interaction energy, spin orbit torque, skyrmions
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