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Fig. 5. Dimensionless velocity distribution for different Zeta potentials and ki , where m =10, 8 =1, 2=0.251: (a) k1 =0.5;
(b) o =2.
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(c) 2=25.1; (d) £2=251.
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Fig. 7. Dimensionless micro-rotating profiles distribution for different Zeta potentials and ki, where m =10, =1, 2 =10.251:

(a) k1 =05; (b)vo=2.
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Fig. 9. Change of Qo under different Zeta potentials, where 2 = 0.251,8=1: (a) k1 = 0.5; (b) m = 50.
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Fig. 10. Dependence of amplitude of normalized volume flow rate on m and k;j for different k; and 2, where o =2,8=1:

(a) £2=0.251; (b) ki =0.5.
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Time period electroosmotic flow of a class of incompressible
micropolar fluid in parallel plate microchannels
under high Zeta potential”

Yu Xin-Ru  Cui Ji-Feng  Chen Xiao-Gang! Mu Jiang-Yong  Qiao Yu-Ran
(College of Science, Inner Mongolia University of Technology, Hohhot 010051, China)

( Received 29 April 2024; revised manuscript received 15 July 2024 )
Abstract

The time-periodic electroosmotic flow of a class of incompressible micropolar fluid in a parallel plate
microchannel under high wall Zeta potential is studied in this work. Without using the Debye-Hiickel linear
approximation, the finite difference method is used to numerically solve the nonlinear Poisson-Boltzmann
equation, the continuity equation, momentum equation, angular momentum equation, and constitutive equation
of incompressible micropolar fluid. In the case of low Zeta potential, the results are compared with the
analytical solution obtained in the Debye-Hiickel linear approximation, and the feasibility of the numerical
method is also proved. The influences of dimensionless parameters, such as electric width m , electric oscillation
frequency {2, and micro-polarity parameter k1 on the velocity and microrotation effect of incompressible micro-
polarity fluid under high Zeta potential are discussed. The results are shown below. 1) With the increase of Zeta
potential, the velocity, micro-rotation, volume flow, micro-rotation strength and shear stress of the micropolar
fluid all increase, indicating that compared with the low Zeta potential, the high Zeta potential has a significant
promotion effect on the electroosmotic flow of the micropolar fluid. 2) Under high Zeta potential, with the
increase of the micro-polarity parameter, the velocity of the micropolar fluid decreases, and the micro-rotation
effect shows a first-increasing-and-then-decreasing trend. 3) Under high Zeta potential, when the electric
oscillation frequency is lower (less than 1), the increase of the electric width promotes the flow of the micropolar
fluid, but impedes its micro-rotation; when the electric oscillation frequency is higher (greater than 1), the
increase of the electric width impedes the flow and micro-rotation of the micropolar fluid, but expedites rapid
increase of the volume flow rate and tends to be constant. 4) Under high Zeta potential, when the electric
oscillation frequency is lower (less than 1), the electroosmotic flow velocity and micro-rotation of the micropolar
fluid show an obvious oscillation trend with the change of the electric oscillation frequency, but the peak value
of the velocity and micro-rotation, the volume flow rate and the micro-rotation intensity remain unchanged;
when the electric oscillation frequency is higher (greater than 1), with the increase of the electric oscillation
frequency, the amplitude of micropolar fluid electroosmotic flow velocity and the amplitude of microrotation
decrease, and also the volume flow and microrotation intensity decrease until they reach zero. 5) Under high
Zeta potential, the amplitude of wall shear stress o21 and o12 increase with the electric width increasing; when
the electric oscillation frequency is lower (less than 1), the wall shear stress 021 and 12 do not change with
the increase of the electric oscillation frequency, and the amplitude of the wall shear stress o2 is not affected by
the value of the micro-polarity parameter; when the electric oscillation frequency is higher (greater than 1), the
amplitude of wall shear stress 21 and o12 decrease with the increase of the electric oscillation frequency, and
the amplitude of wall shear stress o21 decreases with the increase of the micro-polarity parameter, while the

amplitude of wall shear stress o12 decreases linearly with the increase of the micro-polarity parameter.

Keywords: micropolar fluid, high Zeta potential, electroosmotic flow, parallel plate microchannel, finite

difference method

PACS: 47.11.Bc, 47.65.Gx, 87.85.gf DOI: 10.7498/aps.73.20240591
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