) 32 2 3R Acta Phys. Sin. Vol. 73, No. 16 (2024)

160302

{F L2 AR EL 1 P 3| K2R TUAE Dicke 110
BT

B 31029

gk L & 1)2)3)1

F 21 A5 D2)3)

1) (REITE BB, & 030619)
2) (RJEUME~E e THE-5 R BT, E - 030619)
3) (RIBUIEA=BE, FREMALITI S XY AR LV RS0, B 030619)

(2024 4F 5 3 10 HE; 2024 4E 6 A 17 HIEMEEH)

b AR S O IR SR AN W B Y — > R L. A SCHE AR E XURE Dicke A5 RL Y HEAE B 5
TG AR LR TAE N, OFH TS DR I 1 T ARAE . R A BEA T 78 0k WIS B 45 A A 2 B RS
REBHIZ BRI PRI 37 5% T DU AN [] B9 e 491 56 R BEATIE ST, OF AR SER S0, dlad vl 9 9 J5L - e i AR £ A
HAEMZA, il TR MZ KT T8RN F a5, ASCEEE TR R RIEMLRIE T, WA IE WA, 3t
A7 114 1E -8 i SR 0 T O e A 5 T T I B AR T i AR L M A LA TR W R T LA S R AR Y
XU Dicke #5875 [ 1 6 AH 2188 5 5 AH 19 — 9 b A AR . 7LD R I 5 BT 47 1 SRS AR, i ar i A s, B
J Bt 1) R 0] 2 %) TE AR Y i AR DO B AR AR AR TR 37 FE A TR %o

TR B AR 1 FURIRE 25 ) B A (BT BRI

KHEIR : XU Dicke BAY, [ FOUrYAELMAI EAEM, A, B e Tk

PACS: 03.75.Mn, 05.30.Rt, 32.80.Qk, 42.50.Pq

1 5

AR R AR R B N IR 4
TRERES, i ks o DR RS S B & S8
FEIRARA 13, SR Tl FIBE SR Ay PRSI ) —
ANEEPREL Dicke B8 ik N> HEGLAY TR
BEOCHIM A, 45 T R SRR R
SO RS, JE A TOL A ISR, Dicke BRI
IEHAHEB RS A gt T AR R E PR, 2
ARG R R PETERE S SRR B R A T4
PR R B, X I R TR S T2
TR FTHE KA — A BRAEL, SR T AR 2
TRYTEE R G T RIRPE LA KB AR R S

i

DOI: 10.7498/aps.73.20240665

FB, R T B AT OGO A I, R R
TR | ity BEER AW S A G A ] [l g 61,

VTAER, WFFE 28 Dicke BORIR RIS, TR T
B 5 AT R T S (0 AU AR A
R 5 LRI IR R AT T IE R AN B R A
TG ARAR 1281 PSS SRR T e B SR A
FA) R A8 S R S, UEBH G AT ATE X PR A A AT
HENUIRET &5, AT LIRS 58 5 BR AT 410, B
WG T WD th B 5 — ARG, X
S SRTELL R T8 (A, < 0) AR TR
W (A, > 0) BB 1. JEFADEY
K AN [FIHR G 3B SR Dicke BRI 7] DL A=
— G T AR U8 Ar T T — R R S T
AHAS AR S (190, F635 T 2488 Dicke FRAI7E AL
BN AFEAE B — 2651 20, 3 S50 56 F1H S AF 5

* ERHRFIERS (S 12304404) ANLIPEE FAVPFITITR (S 202203021222236) BF B LS

t BIE1E#H. E-mail: zhangwh@tynu.edu.cn
© 2024 FEYIEZS Chinese Physical Society

http://wulixb.iphy.ac.cn

160302-1


http://doi.org/10.7498/aps.73.20240665
mailto:zhangwh@tynu.edu.cn
mailto:zhangwh@tynu.edu.cn
http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

¥ 1B ¥ Acta Phys. Sin.

Vol. 73, No. 16 (2024)

160302

PRt TIEOGE S RS R RS Oy ).

AR — O R R MR K
AR SRR ZUR T B e R 2 AE M — a4
AL R, BEMAEA S K B — B[] PR A R

— B2 A RIETFHOR TR T kAN R, A5

LT Dicke A5 75 - i Dy L2 381 768 4 5 1 AH AR P
MG R R R G, BB G i3 (-
% T EH 5 R R — A~ AR ) AR 5. RS
5 v S W R TR R S A, R B A, T
H BB FIC AR LA B AR, X TC5E N1
TR AR AR AR B AL T T RE. X Rh A 2
JEE S s PN B B -2 DR T EE R R SN i —
A NHERT-5, 7T ARG R - B Ol
R RA RN ZERG, OF R FICIEL A
HAEHE Dicke 8 AALLEG FHA ) 1Z ML
A, HARA & SO E 7. FRATTAE
Dicke B8 A5 T I -G AR AR BEAE A
FAAAR, A S5 b T AR A AR 5 R Y K
AN, FEHEOCRIUR, v B E R TS, fE
WIS IS R R TGS IER A | 8 i
FHVIE 5 FH-RE 5 S AH A2 0 R, TE A0 2 5 55
AT S22 110 L 4 B A 381 S B 1) T R AH ) 30— 4 o
FARAR P2 ST T ARERY UL Dicke AR5 (1) & ¥~
AR, AFAE TE 5 A 2 R SR AR A B 2 AH A 1291,

ASCHAET B — B0 5 A AR Lk R AE
FAER, B2 005 B E 7 ) (R A i BT
HEER AT, 43S UG5 1 DU A EL 519G 2R
B WSS Dicke A7 () i F-AHAE. A A T8 071k
e T IS RE R R, SRR R S
SKIAE, IF H B K T%F, I35 T I
SN A TR RO . A KR i 7 A i k. ARk
A EAE S 8 FRUROE 37 1 A5 X SR S 22
P IEAFZS A DX, DA R e T R 320 8 8 S AR R
F14) J52 i 1) 8 4 S A 381) 2 e 1) 15 R ) 338 A AR
14301 A X Sl A A R R ). R AR A B e A A
BRI i, A i FARAS R Z0K .

2 A AT Fn Ak A
2.1 HERIBIPSHT

TEXNE Y, ROE S [ AR HAE N A~
REZLSRD J5lT L, 7R 5 XL M SR &
SREEFRREIIZRAE T, — RO 5T AR A B
VRIS R GE R e i a m 5 Oy [722.25)

g
H= wlaTal—i—w Jz + ——
2;; : ‘ 2N

t Uu. s

X lzzl;Q (al —|—al> (Jp+J-)+ NJzalal, (1)
Hrha=1, Y U= o0, (1) =020 FR R
% Dicke BRI B & 2. af (a)) (1= 1, 2) JEPIE
H e (R 54 NREIR TG w %
R RERRFRRES 2E, HUCH IR, 6T
T AR G B A B AR E T g, g 205
T SO T 2 ) AR T R Y SE g S . SRR
BEEAFH T, , Je Fom, M RRRE ([, T =2J,,
[Ty, J.] = FJo . SRAK AT IR I |, m) , i
ST |G, m) =mj,m), ARGEREZE2j +1=N+1,
J=N/2. B ERI R 0 =A+pU, Hip
A = wp — wy, & FE I we FHH 305 w,, 8] 1Y
P, B e 59K KA TCEAF L, A5 Lin %0
B B =7/6U, UNREFICAELMAHBEIEAS
i, AR BE S, AN IEEh T S . SR
A AR wq W] LA TE 3 SO 5 i 1 0T A FE
FHROCFAHEAEH USRI, T IEn] i, X
AR FR A fE RS 23 7 A 58 RO R

leziwa

BT XU A AR v LT I S 3 B AR N A
TRESUB R TSR A TR R, 2 07 A SR AR wy
WOEYs, yI7 W EA B w2 8956, 2 T7 10 A7 22 O
A wp , R

Fig. 1. Experimental setup for a trapped ultra-cold atoms in

-'m|

ltH

the dual-mode optical cavity. The equivalent N two-level
ultracold atoms are in this cavity, with a equivalent cavity
frequency wip light field in the z direction, a cavity fre-
quency wg light field in the y direction, and in the z direc-
tion, the pumped laser frequency is wp , and only the cav-

ity frequency w; is regulated.
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Table 1.  Parameters of the corresponding phase diagram when blue detuning (U as variable).
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Fig. 2. Phase diagram in blue detuning.
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Fig. 3. Variations curves of (al)—(d1) total average photon number n, , (a2)—(d2) atomic population imbalance Ang and (a3)—(d3)

average ground state energy e with the atom-field coupling intensity g/w, under the blue detuning.
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Fig. 4. Under blue detuning, the first-order deflection de_/dg (a) ground state energy with respect to g and the second-order

deflection 9%¢_/8g? (b) change curve with respect to g.
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Table 3.  Parameters of the corresponding phase diagram when red detuning (U as variable).
¥ ge— [wa get/Wa U/wa (W' <0)
1 2U0 U 1 50 U U U

0 —=4/60+ —, — > =30 —4/—60 — —, — < —12 20 + <0, — < -—17.14
“ \/§ Wa Wa \/g Wa Wa 6w, Wa

T 1 2U U 1 5U U w1 U
b = ——F4/61 4+ —, — > —30.5 ——— /61 — —, — < —12.2 20 + + - <0, — < —-17.43

6 1+ \/g Wa  Wa 1+ \/g Wa  Wa 6wa 3 Wa

T 1 2U U 1 50 U U U

— —=4/63+ —, — > =315 ——/—63 — —, — < —126 20 + +1<0, — < —18
‘ 4 2v/3 wa wa 2v3V Wa  wa 6w wa

T 1 2U U 1 5U0 U U U
d > ——/694+ —, — > —34.5 ———/—69 — —, — < —13.8 20 4 +3<0, — < —19.71

3 3+ \/g Wa Wa 3+ \/g Wa Wa 6wa Wa
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Fig. 5. Phase diagram in red detuning.
£4  Ujwg =—20, —241F, g Flgey WIE
Table 4. Values of ge— and ge+ at U/wa = —20, —24.
@ ge— /wa Get /wa
go— Jwa = —20 go— Jwa = —24 U/wa = —20 U/jwa = —24
a 0 2.58 2.00 3.65 4.47
b /6 1.68 1.32 2.29 2.81
c /4 1.38 1.12 1.76 2.18
d /3 1.14 0.97 1.18 1.51
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Fig. 6. Variations curves of (al)-(dl) total average photon number n,, (a2)-(d2) atomic population imbalance An,, and

(a3)—(d3) average ground state energy with the atom-field coupling coefficient g/w, under the red detuning.
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Fig. 7. Under red detuning, the first-order deflection de/dg (a) ground state energy with respect to g and the second-order deflec-
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Table 5. Values of ge— and get+ at U/w, = —14, — 16.
0 gc,/wa Qc+/wa
U/jwa = —14 U/wa = —16 Ujwa, = —14 U/wa = —16
a 0 3.27 3.06 1.83 2.58
b /6 2.10 1.97 1.10 1.60
c n/4 1.71 1.61 0.76 1.19
d n/3 1.35 1.29 0.21 0.70
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Fig. 8. Variation of atomic population imbalance An, as a function of the strength of the atom-field g/w, under red detuning.
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Nonlinear interactions caused novel quantum phase
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Abstract

Quantum phase transition is an important subject in the field of quantum optics and condensed matter
physics. In this work, we study the quantum phase transition of the two-mode Dicke model by using the
nonlinear atom-light interaction introduced into the interaction between one mode light field and atom. The

spin coherent variational method is used to study macroscopic multi-particle quantum systems. Firstly, the
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pseudo spin operator is diagonalized to obtain the variational fundamental state energy functional by means of
spin coherent state transformation under the condition of coherent state light field. The energy functional is
used to find the extreme value of the classical field variable, and the second derivative is determined to find the
minimum value, and finally the exact solution of the ground state energy is given. Four different proportional
relationships are used to study the two-mode optical field, and the rich structure of macroscopic multi-particle
quantum states is given by adjusting atom-optical nonlinear interaction parameters under the experimental
parameters. The abundant ground state properties such as bistable normal phase, coexisting normal-
superradiation and atomic population inversion under blue and red detuning are presented. The nonlinear atom-
light interaction causes blue detuning, and there is also a second-order quantum phase transition from the
normal phase to the superradiation phase in the standard two-mode Dicke model. In the case of red detuning, a
novel and stable reversed superradiation phase also appears. With the increase of the coupling coefficient, the
reversed superradiation phase is transformed into the reversed normal phase. The nonlinear interaction between
atoms and light and the different ratio of two modes of light field have great influence on the phase boundary of
quantum phase transition, and the region of quantum state, as shown in Fig. (a)—(d).

When the nonlinear interaction takes two definite values, the curve of the ground state physical parameters
changing with the coupling parameters of atoms and light also reflects the novel second-order inverse quantum
phase transition from the reversed superradiation phase to the reversed normal phase in red detuning, as shown
in Fig. (al)—(d3).

Keywords: two-mode Dicke model, atomic-optical nonlinear interaction, quantum phase transition, spin

coherent state method

PACS: 03.75.Mn, 05.30.Rt, 32.80.Qk, 42.50.Pq DOI: 10.7498 /aps.73.20240665

* Project supported by the National Natural Science Foundation of China (Grant No. 12304404) and the Basic Research
Project of Shanxi Province, China (Grant No. 202203021222236).

1 Corresponding author. E-mail: zhangwh@tynu.edu.cn

160302-12


http://doi.org/10.7498/aps.73.20240665
mailto:zhangwh@tynu.edu.cn
mailto:zhangwh@tynu.edu.cn
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

Chinese Physical Society

%ﬂ *ﬁActa Physica Sinica

Institute of Physics, CAS

LR A EAEF 51 R DED] cke BRI IFT B FAHE
RERZ KXE T als

Nonlinear interactions caused novel quantum phase transitions in two—mode Dicke models

Zhao Xiu-Qin  Zhang Wen-Hui  Wang Hong-Mei

5] Fi{# B Citation: Acta Physica Sinica, 73, 160302 (2024)  DOI: 10.7498/aps.73.20240665
TEZE [T View online: https:/doi.org/10.7498/aps.73.20240665
BHAPIZS View table of contents: http://wulixb.iphy.ac.cn

FEAT ARG HoAh S

Articles you may be interested in

5 A Dzyaloshinskii—MoriyaH 5 AE Y H e VAR AR AR (1) & T A AR N A

Quantum phase transition and topological order scaling in spin—1 bond—alternating Heisenberg model with Dzyaloshinskii-Moriya

interaction

PFEEEAR. 2020, 69(9): 090302  https:/doi.ore/10.7498/aps.69.20191773

Jaynes—Cummings i A5 B T Rabi fi A AR 78 (14 12t 1 A1 AR
The quantum phase transition in the Jaynes—Cummings lattice model and the Rabi lattice model

PIBR2A4R. 2021, 70(10): 100201 hitps:/doi.org/10.7498/aps.70.20202066

UG- 172412 SEHE Y 7 AH S5 AR S
Quantum phases and transitions of spin—1/2 quantum compass chain

YrE2E 4. 2022, 71(3): 030302 https:/doi.org/10.7498/aps.71.20211433

WE—AEIRA A FE(1/2, 5/2) Tsing— XXZH (14 FH0 T R LA B

Quantum coherence and mutual information of mixed spin—(1/2, 5/2) Ising—XXZ model on quasi—one—dimensional lattices

YIBR2AHR. 2023, 72(13): 130301 hitps:/doi.org/10.7498/aps.72.20230381

# 0] S Eruby i P R TR 2R B Mot AL

Mott transition of fermions in anisotropic ruby lattice

WAL 2021, 70(23): 230305 https://doi.org/10.7498/aps.70.20210963

BT B 1 DG AR R SRR
Quantum simulation of ultracold atoms in optical lattice based on dynamical mean—field theory

WIBEAEA. 2023, 72(18): 183701 hitps://doi.org/10.7498/aps.72.20230701


https://wulixb.iphy.ac.cn
https://doi.org/10.7498/aps.73.20240665
http://wulixb.iphy.ac.cn
https://doi.org/10.7498/aps.69.20191773
https://doi.org/10.7498/aps.70.20202066
https://doi.org/10.7498/aps.71.20211433
https://doi.org/10.7498/aps.72.20230381
https://doi.org/10.7498/aps.70.20210963
https://doi.org/10.7498/aps.72.20230701

	1 引　言
	2 模型分析和精确解
	2.1 模型及理论分析
	2.2 基态能量泛函
	2.3 平均基态能量、总的平均光子数、原子布居数差
	2.4 量子相变级次的判定

	3 相图和量子相变级次
	3.1 蓝失谐时的相图和基态物理量线图
	3.2 蓝失谐时的量子相变特性
	3.3 红失谐时的相图和基态物理量线图
	3.4 红失谐时的量子相变特性
	3.5 红失谐时两个正常相之间的量子相变

	4 结　论
	参考文献

