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Fig. 1. Vertical atmospheric depth profiles over LHAASO

by U.S. standard atmospheric model and SABER as a func-
tion of altitude.
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Fig. 2. Variation of surface atmospheric depth at LHAASO,
the blue is the calculation of the standard atmospheric
model of the United States, and the red is the observation
data of the standard weather station on the ground.

JITAT 1) 30 S AR R T 25 T S [ B o R AU 7Y
AR B RS E 597.98 g/em? . BRI, 523 [H]
SEIA LHAASO b3 I 47 e, 56 B A
RABII IR /. NSk 28 B bR RS
BRI FHF LHAASO 3 55 WFCTA iR | A
PUREHE, B4 R R 22

169201-3


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

#) 32 2 3R Acta Phys. Sin. Vol. 73, No. 16 (2024) 169201

3 AT MSISE-90 KAFEBEAMASR
R B &
3.1 MSISE-90 K5 Z KA
MSIS (mass spectrometer and incoherent sca-
tter radar models) EZ I K ABIAL, [{ 1977 LA
K— BRSOt e S I SR S T R
MSIS-778% MSIS-865"), MSISE-90 A1 NRLMSISE-
006521, MSTSE-90 H AL A 1 M Bk A M i i
FIPZ AP EIR AN EEE . b i R U

TG 1987 4F, Hedin 2580 JET- MSIS-86 #t31,

I FEASAR T RIS B o A T2 RSO 8 ok, AR
295 A E I T LA b S B2 T MSISE-
90 KA BRI 7E 72.5 km DL T MSISE-90 £
R B F R ET MAP FIH 6945 B 24 18
SR H) FAE B3] 3 — Aokt [ B 2 [B] AF 5

514 (COSPAR, committee on space research)
FEEMYEH) CIRAS6 ARG H B, #E 20 km
Z T T EEREZILT (NMCO) FEE B
A EEIE. LA, B & T 1947 4F—1972 1)
FEFCAE | BATE BRFN AR 50 % 6 i I e . T
1E 72.5 km 2 | MSISE-90 £ % 5 & 33 1) MSIS-
86 BT LA A [F], HI2 A8 T T 1A HE T 05 0
DB}, FE S A 5T %% B 5 TH, NRLMSISE-
00 256 KBRS MSISE-90 7E48 31 F & —%0),
FH T MSISE-90 A AU fift I R 56 J5fili, A 55 i
FH MSISE-90 #5571, 5 3 [ bR KA L, ixX
AT £ 58 Hh 1A A A5 T2 RE A 0 8 /08 B A B ]
F1zs (8] AR Ak, AR AR TR v i PR 28 B AR
VPR RIS T A i AR, R/ A I 2% B 2 i
HAR B 2 —. AR SCHEFR 1 h BRI R R RE R R R
AT BRI TSR

3.2 MSISE-90 XS ARH 0z b il 2 X i &Y
bb &t
N TEGIE MSISE-90 AAUEREHF LHAASO,
F MSISE-90 A7 £5 2] 1 AR B 55 A M 1) )
AT EL.
3.2.1  MSISE-90 # %! 5 SABER M= rb &

YR SABER. T FH B4 508 T 78 18 % B4 st [ 5
KL, Pkt MSISE-90 RS [ KA % i B4k 115
WM KRR EERL. F 3 Bon TR 14—50 km

Z[a], SABER & 1) KB BE I 25 MISIE-90 #52
AU IR IE 22 B4, IR 14—15 km 4k,
SABER 1%l 2 B 5 K T MSISE-90, HAR IR
4t SABER 1Y W 2 {H /N T MSISE-90, 7F i 4K i
20 km b 2R EAKME, KA 1.5 g/em® . 30 km LU I
R REE, /NT0.021.5 glem? . Rk, MSISE-
90 Y RAIREE W T 1AL LHAASO £ — & B 1]
ARSI Y 5

3.2.2  MSISE-90 & 5 LHAASO & A %36

PRI N2 o=

XF 2018 4F 1—12 H & /N B 18] B il A 1)
LHAASO HiTai S vl ic SRR, A T H

o

= t

Q 0.5 F

& t

~

= P

[ .

3 R

o —0.5 .

H t

£ t ¢

o, —1.0F }

n

o) b

é —1.5¢ N ) )

< 20 30 40 50
Altitude/km

Kl 3 SABER FIl MSISE-90 B2 &I 7E 29 K A5 Hh i1 K
AIRIE R M L. o il s SABER 1) K A0UR B 1 2k U 2<
L5 MSISE-90 5% A i 17 1) Kk A IR B 4 22 1

Fig. 3. Comparison of the mean atmospheric depth profile
derived from SABER and MSISE-90 model in 29 days. The
y-axis represents for the difference of the mean atmospheric
depth profile from SABER minus that from MSISE-90 model.
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Fig. 4. Distribution of atmospheric depth with MSISE-90
model minus weather station data. The atmospheric depth
of MSISE-90 is very consistent with records from standard
weather stations on the ground, with an average of (3.752 +
0.036) g-cm 2. It could be a systematic difference between

the two atmospheric depths.
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Fig. 5. Vertical atmospheric depth profile from 4.4 km
through 50 km at zero o’clock each day in April 2018.
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Fig. 6. Distribution of monthly mean atmospheric depth

minus the annual average.
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®1 RIS
Table 1.  Atmospheric depth model parameters.
Month Layer i Altitude h/km a;/(g-cm?) b;/(g-cm?) ¢;/(g-em™)
1 4.4—10 —88.67664 1153.38932 885318.24144
2 10—40 0.1503 1368.33236 635083.57589
Jan 3 40—70 0.00097 594.27741 759999.94129
4 70—100 0.00086 1907.62483 667666.97913
1 4.4—10 —87.39177 1154.47929 881758.5079
2 10—40 0.15609 1367.33681 635285.9599
freb 3 40—70 0.00027 576.34076 764858.0621
4 70—100 0.00085 2045.36876 663026.919
1 4.4—10 —87.84831 1151.6271 885628.7299
’ 2 10—40 0.11315 1369.10268 635555.228
Mar 3 40—70 -0.00049 553.3669 771529.8036
4 70—100 0.00091 2209.83224 658731.9146
1 4.4—10 —90.25622 1145.51995 897003.8093
2 10—40 0.06234 1373.1308 635903.6963
Apr 3 40—70 -0.00116 539.40289 776888.0464
4 70—100 0.00097 2423.60087 654760.7167
1 4.4—10 —94.01004 1143.16428 911761.1959
2 10—40 0.03596 1381.07511 636947.2602
May 3 40—70 -0.00132 549.94468 776854.1294
4 70—100 0.00106 2661.49827 651353.7108
1 4.4—10 -97.91433 1146.13178 925652.5235
2 10—40 0.01816 1390.15178 639198.5601
Jun 3 40—70 -0.00087 583.28466 771416.4869
4 70—100 0.00114 2874.15677 648179.0992
1 4.4—10 —100.06562 1148.64061 933675.7634
2 10—40 -0.02423 1392.20555 641946.5067
ul 3 40—70 -0.00005 618.18009 764300.351
4 70—100 0.00111 2927.94379 646356.8679
1 4.4—10 —100.35386 1151.17543 934589.3083
Aug 2 10—40 -0.09651 1391.26844 643717.7458
3 40—70 0.00089 636.09755 759237.935
4 70—100 -0.00106 2753.18923 647878.0245
1 4.4—10 —-98.98887 1149.90531 929337.2904
2 10—40 -0.15062 1386.23148 643237.0362
Sep 3 40—70 0.0016 629.96089 757639.8883
4 70—100 0.00097 2427.85445 653170.7765
1 4.4—10 —96.77554 1147.98637 919739.3653
2 10—40 —0.13485 1381.02577 640744.2671
Oct 3 40—70 0.0019 614.52746 757915.0523
4 70—100 0.00091 2107.53654 660753.9717
1 4.4—10 —94.08387 1147.66351 907591.9124
2 10—40 -0.04465 1376.11079 637729.8644
Nov 3 40—70 -0.00183 604.50776 758089.8866
4 70—100 0.00088 1903.76056 667277.3079
1 4.4—10 —91.25224 1150.55845 895114.7529
Dec 2 10—40 0.07201 1372.32941 635695.0018
3 40—70 0.0015 601.61656 758134.5887
4 70—100 -0.00089 1844.46114 669845.4268
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Abstract

High altitude cosmic ray observatory (LHAASO) is located at Haizi Mountain in Daocheng county,
Sichuan province, China. Its wide field of view Cherenkov telescope array (WFCTA) is primarily used to study
cosmic rays through observing the Cherenkov light signals produced during extensive air showers. Calibration,
simulation, and reconstruction of WFCTA are all related to atmospheric depth. The atmospheric depth model
currently used is the US standard atmosphere depth profile model. In this study, the US standard atmosphere
depth profile model is compared with the atmospheric depth profile recorded by the infrared radiometer SABER,
carried by the satellite TIMED at LHAASO from 14 km to 50 km, and also with the atmospheric depth
recorded by the ground meteorological station at LHAASO. The atmospheric depth obtained from the US
standard atmosphere model is consistently smaller. The MSISE-90 atmospheric model describes the neutral
temperature and density from the Earth's surface to the thermosphere. Further research shows good consistency
between the MSISE-90 atmospheric model and the atmospheric depth recorded by TIMED/SABER and the
ground standard meteorological station at LHAASO. According to the MSISE-90 atmospheric model, the
average atmospheric depth profile at LHAASO is lowest in January, followed sequentially by February, March,
April, November, and December, which are also the optimal observation months for WFCTA operation. The
atmospheric boundary layer is highest in April, with the diurnal variation of atmospheric depth being about 2%.
Using the functional form of the US standard atmosphere odel, the monthly atmospheric depth profile of the
LHAASO site is obtained by fitting an atmospheric depth profile of 4.4 to 100 km per month. And the
comparison between the lateral distribution of the Cherenkov photons produced by 100 TeV cosmic-ray protons
incident at a zenith angle of 30° in the MSISE-90 atmospheric model and that in the US standard atmosphere

model shows that their maximum difference reaches about 20%.

Keywords: the MSISE-90 atmospheric model, atmospheric depth profiles, large high altitude air shower

observatory, Cherenkov photon
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