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Fig. 1. (a) Experimental setup for THz emission spectroscopy in the configuration of transmission; (b) in silicon-based Ta/CoFeB/Ir

THz spintronic heterostructures, a femtosecond laser pulse excites CoFeB FM layer, the spin current j, injects into the adjacent Ta

and Ir layers, and then is transformed into transverse charge current j., which is perpendicular to M.
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Fig. 2. (a) THz emission pulses of Ta(4 nm)/CoFeB(8 nm)/Ir(0.4 nm) and (b) Ta(4 nm)/CoFeB(8 nm)/Ir(0.8 nm) three-layer het-

erostructures under +H; the corresponding normalized amplitude spectra by Fourier transform for (c¢) Ta(4 nm)/CoFeB(8 nm)/

Ir(0.4 nm), (d) Ta(4 nm)/CoFeB(8 nm)/Ir(0.8 nm).
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Fig. 3. (a) Time domain signals emitted from a Ta(4 nm)/CoFeB(8 nm)/Ir(0.8 nm) heterostructure measured under different pump
fluences in a range of 0.42-3.36 mJ/cm?; (b) the peak to peak values of THz emission as a function of incident pump fluence, the

symbols are raw data and the red dashed line is a fitting curve.
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Fig. 4. (a) THz emission from Ta(4 nm)/CoFeB(8 nm)/Ir (z = 0.4—10 nm); (b) the peak to peak amplitudes of THz emission as a

function of thickness of Ir layer, the red line is a fit using a spin transport model Eq.(1).
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CoFeB/Ir heterostructure as a function of Ir thickess, measured at thickness of CoFeB is 2.4 nm.
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Abstract

Terahertz spectroscopy and imaging have many applications, so the generation of broadband terahertz
radiation is very important, but now it faces some challenges. Opto-spintronic terahertz emitters, composed of
nanometer-thin magnetic multilayer, can produce high-quality broad-band terahertz pulses. Integration of opto-
spintronic terahertz emitters onto the silicon wafers is the first step towards their usage in modern photonic
devices. In this work, Ta/CoFeB/Ir heterostructures are deposited on thermally oxidized silicon wafers by dc
magnetron sputtering. Under the illumination of a femtosecond laser pulse on the Ta/CoFeB/Ir trilayer
heterostructure grown on silicon substrate, a spin current can be generated in the ferromagnetic layer due to the
ultrafast demagnetization. The spin current is transported and injected into the neighboring non-magnetic metal
layers of Ta and Ir. Consequently, the spin current can be converted into the charge current due to the strong
spin-orbit coupling. The sub-picosecond transient charge current gives rise to the terahertz radiation that enters
into the free space. The terahertz electric field is fully inverted when the magnetization is reversed, which
indicates a strong connection between THz radiation and spin order of the heterostructure. The THz radiation
from Ta/CoFeB/Ir heterostructure covers the 0.1-2.5 THz frequency range with a maximum value of about
0.64 THz. We also investigate the dependence of THz peak-to-peak value on the pump fluence. The THz
emission is found to be saturated at a pump fluence of ~0.73 mJ/cm?. Our results demonstrate the existence of
the strong spin-orbit coupling in the heavy metal Ir. Furthermore, we optimize the THz emission from the
Ta/CoFeB/Ir heterostructure by changing the thickness of Ir layer. According to the thickness dependence of
THz emission from the heterostructure, the propagation length of the spin current at THz frequencies is

extracted to be about (0.5940.12) nm, which is shorter than the GHz experimental measurement (~1.34 nm).
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Our experimental observation is consistent with that in the antiferromagnet IrMn layer, which may be
attributed to different transport regimes. Theoretically, the optimized thickness values for CoFeB and Ir layers
are 2.4 nm and 1.1 nm, respectively.
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