¥ 1B ¥ Acta Phys. Sin.

Vol. 73, No. 16 (2024)

163201

TTHBR = i E TR

x| 5 Y

ALY

Fr W B i

FAEMED mRY

1) (PRGN SEAR SR, ANESH e i 4 d T S0, TR 400715)
2) (BRI A 7 LA e, f5PH 464000)

(2024 4E 5 A 25 HY#; 2024 4E 6 A 10 HUEMEHH)

RSO = e 2 R EERERIAT ST T AT Ak = €35 He JE7 A9 ARG XU B . R T3 B A [R) A9 1600 nm

#1800 nm Jk vh2H 3K 2l 4% , ARG EE Y 400 nm Bk bV 45 il . DFoeal Rk W), 5 —
YR M i ) A 5 K iR ] 435 260 T A S ) HEL 3 00 AR 20 ol Ak 7 HL O BK S o i

A% 7] i L T (O A —

YR R filf A8 BLE | 25 50k

RS Sl i A AN T DX e S R AR, T LA e A )R [l S i 03 A 0L 8 v
i LG, TS ST L Sl A A T Sl e A RO 53 A, 22 UG ] AR - B U H B AR fiE R R AL

N, M —
FL S BIL A 1 90 A

YR (o]l 38 5 E0A) XU Rk 5 DA 88 9 i ri ML AR g = T LA e A A ) A ) R A S B X AL

KR ARUOF U R, ATk = Y, FREE, sl e

PACS: 32.80.Fb, 32.80.Rm, 42.50.Hz

1 3

FE AR PR O DK 8K 30 Ji 7 LS Y S
rh AT SR £ 38 A UL HR iy 2 1747 o IR R
2 BT S LA, R fap B 7 R R R
WS ) I 22 S BAR — N TR T IR 25 D). X I 52
R AR R T AUHL S (nonsequential double ioniza-
tion, NSDI)Pl. X H, fif 2 7 2t B9 f IR A 12, 5
FBIy i R RG2S AL (7 TP Ly Y DG 18
UESE NSDI HEf — AN HL - 19 F B 2l o e By
1R (] A4 S Y 0L PR L - YR (R B )
B B0 NSDI E’JF':E (8] e g L) 2
FTHL - OCHRARpE 2220 S S pi o 1 2 = 4R
NSDI 5t E@J‘I_%Wﬁ.

AR Z NIRRT, B e B Y
HL T EAE S — UGR MBS B B+ R AR A A0
Bl A% IS I RERE 25 5 — N HL -, S .

il

* E R HRRREIES (S 12074329, 12004323) YERNAIHRE,

t BIE1EH. E-mail: huangcheng@swu.edu.cn
© 2024 FEYIEZS Chinese Physical Society

DOI: 10.7498/aps.73.20240737

T2 KA, S s ] g 97, S rl
BT FEYN ) L2 — VR [ml g B st e o B 2
K, R LT ICH SR B T & A A R il RN
BRemEASE TR s, (R H T
FEROES YIRS T 0] LIFE ) 200K 0] 25 1 Fff
T, 5 Bh TR UGR [l iR B 1 PS5 | i) DL
W M [ EE R, ZUGR % T T e SRR T
SN LR, 75 TR A PO XNk
ok o, FHA XTRRIE, — AN A A4S
FHR L, i— IR B IR F N+1 (N > 1)
YRR [ il 4 5 i — > U6 L S HL T IV U [ Al
50U HEL 5 1) LT RO [ R Bl R /NIRRT
JIT LA P 0T A5 2 T 20 0 A7 R DG L T 3
A A AL TG AT ORI F) 2 - sl 43 A AT Sk
FL - 2yt o3 A0 T AR F ER LR TR A
e fE B, Ma 45 271 F1 Luo 55 28 3 1 78 800 nm A9
Z JEH A Tk b B & im—> 400 nm 19 55 45 1 3
RN XFR M, FESC I AL FARE) T AN

http://wulixb.iphy.ac.cn

163201-1


http://doi.org/10.7498/aps.73.20240737
mailto:huangcheng@swu.edu.cn
mailto:huangcheng@swu.edu.cn
http://wulixb.iphy.ac.cn
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

) 32 2 3R Acta Phys. Sin. Vol. 73, No. 16 (2024)

163201

FREGE F 3l oA, i AT or R i 1 e
JIT AE AT BRI H B 35 R 2 GR Il . B
J5i, FATTA A 1600 nm+800 nm Y F-17 i Ik £& i
Yt )i 1) NSDI Hr 2 YGR [RIELE Y ik 22, K
T HETR A I FRME, A B A Ik 5 B A
[F]. &5 5 30 FE - 1) 2 B0 R [l R A SR ]
Tl S S0 R H B 1 T A A B

JEHT AT 5T R BT AT IR AR 1) — €835 7T LA AL
M v U e A e A R A e R, 4K
75 3% S 031 2R SR A 5 B 1 A T A R 1Y
1600 nm F1 800 nm WL AR 37, [ 2
MIZ AN 220 0.5m, [HIK BRI R A
SRR, IREAT B [n] Al A EOAGR [ S
B R 2 A 1) S B H - B i 43 A RN S T sl
Aoy B BT, i —2 5 A—3R 400 nm 1) 5545
Y, IR AS A6 X NSDI A i -3 [m1k
B LSRR R R L B ML R R AR .

2 ¥Rk

SR Ho %5 B2 J MY Y = 4 20 B REEAEAL
AT AT AR = 35 7E T AR F 1) NSDL
25 ML 2R ZE AT DR HL A /N ) 1 B R DU 1 ) B
it R R BRI M T 5 3 A S A F
5% 13:5:2022.25, 3537 f g (I 9% L 40 R I 4 Ml R AR
RUEWFIE 3 NSDI WA 8071k, 78 =44 R 25
B L -3 B 2R s Bl 2E R (AR S
K F B ).

d2r; B

dt2
K, o M ey RBAH T I K5 Vi () =
—2//T? + a TR LT S5 RE T 2 R0 E S HEE,
Vee (r1,72) = 1/1/ (r1 — 72)% + b 55 WA~ 1 -2 ]
MIRECHARE. Horp o F1 0 A SEL, Mkt [
EMEEIT R AT S, 3 o = 0.75, b = 0.01.
E(t) =AM kh i E Gy, HREAXNE (1) =
f(t) Eglsin (wt) 2+ sin (2wt + 0.57) z 4 /esin (dwt+
©) 2], HiH w, 2w Fl 4w 43524 1600 nm, 800 nm
F1 400 nm OGRS 203 2 07 R
Pl AR SCHR T AESR FE Y 1600 nm A1 800 nm fik
A IR B, SR Yy 2% 101 W /em?. 33X B
BEEAN TR IO E N 0.5r, LA T LA &2
G HEA BRI FRYE, — RN A —4

=V Vae (1) + Vee (r,m2)| = E(8), - (1)

BRI, WP 1 R FTR. 400 nm [k ok 55
61, H5 1600 nm kMR R e, AL e
B 0.1. K 1600 nm kb EIC N T. f(t) M0k
kBRI L4, IR TR N 2T, HrE i
FEH XN 8T. o i 400 nm 558§l 37 IAHAL, K 1
PR T o = 0.8n Bf, SFH XK —AE N
A HRNEIE.

0.15 F - —- 1600 nm — 16004800 nm
800 nm —— 1600+800+400 nm

0.10 |
0.05

o bl

E(t)/a.u.

—0.05

—0.10

—0.15 ) ) -
2.00 2.25 2.50 2.75 3.00
/T

1 = 0.8 B, — 4G N MO 3% 8
Fig. 1. Waveform of the laser electric field within an optic-

al cycle for ¢ = 0.8m.
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Fig. 2. Correlated electron momentum distributions along the laser polarization direction: (a) ¢ =

(d) p = 1.8
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Fig. 3. Correlated electron momentum distributions of NSDI for those trajectories with return numbers from 1 to 5 for ¢ = 1.2x.
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Fig. 4. Ton momentum distributions along the laser polarization direction: (a) ¢ = 0; (b) ¢ = 0.6m; (¢) ¢ = 1.2m; (d) ¢ = 1.8x.
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Abstract

Nonsequential double ionization (NSDI) of He atoms in a parallel polarized three-color field is investigated
by using a three-dimensional classical ensemble model. The driving field is composed of 1600-nm and 800-nm
laser pulses with equal intensity. A weak 400-nm laser pulse is used as a controlling field. The results indicate
that in the correlated electron momentum distribution and ion momentum distribution, the electron pairs and
ions of the first returning recollision (FRR) trajectory, the odd-returning recollision (ORR) trajectory (excluding
FRR), and the even-returning recollision (ERR) trajectory are located in different regions separated well from
each other. The electron pairs from FRR trajectories mainly distribute around the origin, and those electron
pairs from ORR and ERR trajectories respectively cluster in the first quadrant and the third quadrant. With
the increase of the phase of the controlling field, the proportion of FRR trajectories in NSDI first increases and
then decreases, and the proportions of those trajectories with the returning number more than one first decrease
and then increase, which leads to the fact that with the increase of the phase of the controlling field, the
anticorrelated emissions first increase and then decrease and correspondingly the ion momentum distribution
evolves from a double-hump to a triple-hump and then to a double-hump structure. Moreover, NSDI from
multiple-returning recollision trajectories mainly occur through recollision-induced direct ionization (RDI)
mechanism, while NSDI from the FRR trajectories mainly occurs through recollision-induced excitation with
subsequent ionization (RESI) mechanism. Thus the dominant NSDI ionization mechanism can also be
controlled by changing the phase of the controlling field.

Keywords: nonsequential double ionization, parallel polarized three-color field, recollision, ultrafast dynamics
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