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针对空间光调制器 (spatial light modulator, SLM)激光匀光整形方法, 提出了一种基于机器学习的激光匀

光整形方法. 激光匀光整形的初步方法采用 Gerchberg-Saxton (G-S)算法生成相位全息图, 并使用 SLM将入

射光调制为均匀光斑, 但 SLM的固有匀光误差严重限制光斑均匀性进一步提高. 本文提出的机器学习方法

能够实现对匀光误差进行补偿, 从而提高光斑的均匀度. 基于实验数据, 通过监督学习回归任务建立了匀光

目标图像和实验探测图像之间的映射关系, 实验验证了对匀光误差进行补偿, 对比传统 SLM激光匀光整形

方法, 激光匀光不均匀度相对降低了 13%, 从而验证了误差补偿机器学习方法实现高均匀度激光匀光整形的

可行性与有效性. 本文能够为激光匀光整形方法提供基于机器学习的技术方法参考, 对推动激光加工、光学成

像、光镊等激光应用具有重要的技术价值. 同时, 也能够为人工智能解决光学问题提供问题牵引与方法参考.
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1   引　言

激光匀光整形旨在改变高斯光的空间分布, 精

确控制激光的形状与强度, 实现均匀光斑, 以满足

医疗、通信、工业加工和科学研究等多个领域中对

激光的应用需求, 打破激光应用领域的局限性. 然

而, 现有的激光匀光整形元件制备复杂、灵活性差,

且无法解决光路中杂散光干扰以及零级光干扰产

生的误差, 导致实际应用中得到的均匀光斑光强分

布与预期结果之间存在差异. 随机微透镜阵列 [1–3]

虽然体积小、衍射效率高, 可以实现高均匀度的光

斑, 但其制备工艺复杂且成本高, 技术尚未成熟.

自由曲面透镜方法 [4–6] 突破了传统几何限制, 可以

将任意波前的入射光转换为具有均匀辐照度分布

和平面波前的输出光, 但设计复杂且制造要求高度

精密. 衍射光学元件 [7] 能够精确调制光场分布, 但

无法动态调节或循环利用, 其调制方式固定. SLM

激光匀光整形方法 [8–12] 操作简便, 可动态调节光强

度分布, 然而实验误差阻碍了其匀光均匀度的提

高. 另一方面, 机器学习和激光整形领域存在广泛

的交叉应用, 激光整形领域的许多问题已经通过机

器学习得到解决. 机器学习模型可以设计出自由曲

面系统 [13] 用于激光整形; 卷积神经网络可以用于

设计相位全息图以抑制重建图像的散斑噪声 [14,15].

机器学习方法展示了在两个参数之间建立映射关

系和光学适应的优势. 考虑到 SLM和机器学习的

优势, 将机器学习方法应用于可控 SLM硬件, 开

发了一种用于补偿激光匀光整形实验误差的机器

学习方法. 该方法通过数值模拟和 SLM实验平台,

使用 G-S算法计算相位全息图, 利用 U-net卷积

神经网络模型通过监督学习回归任务建立匀光目

标图像和实验探测图像之间的映射关系, 预测优化

目标强度分布并输入到 G-S算法中, 以生成适用
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于实际应用的均匀光斑. 最后, 我们对所得到的均

匀光斑进行顶部不均匀度分析, 并与传统 G-S算

法结果进行比较. 

2   原理与方法

首先, 使用 G-S算法计算均匀光斑的相位全

息图, 流程图如图 1所示. 从入射激光的幅度分布

开始迭代, 执行正向和逆向的快速傅里叶变换, 并

在空域和频域幅度分布上加以约束, 继续迭代直到

满足预设的截止条件, 从而得到相位全息图 [16].

G-S算法生成的相位全息图用作调制入射激

光为均匀光斑的控制信号, 该相位全息图通过实时

加载到 SLM来控制入射光. 实验装置示意图如图 2

所示, 激光由激光器发出, 入射到 SLM的光敏窗

口上, SLM加载相位全息图, 对入射光进行调制,

输出均匀光斑, 通过调节激光器的焦距, 使得输出

图像的焦平面与相机处于同一平面, 清晰的输出图

像由互补金属氧化物半导体 (complementary metal-

oxide-semiconductor,  CMOS)相机收集 ,  并将收

集到的图像定义为实验探测图像.

采用顶部不均匀度 δ来评价出射的均匀光斑

质量, 计算公式如下:
 

δ =

√√√√ ∑
(x,y)∈W

(|I(x, y)| − Ī)/Ī

n− 1
, (1)

 

Ī =
∑

(x,y)∈W

|I (x, y)| /n, (2)

Ī

其中, I(x, y)为衍射面区域的光强分布, 包括均匀

光斑区域及其周围的非均匀光区域, W 为均匀光

斑区域, n 表示区域 W 内的采样点数,   表示均匀

光斑区域的平均光强. 顶部不均匀度代表了衍射面

中均匀光斑区域的光强均匀度, 顶部不均匀度值越

小, 均匀光斑的光强差值越小, 光强分布越均匀.

imtrain
out

imtrain
in

提出的基于机器学习的激光匀光整形方法旨

在通过与标准 G-S相位全息图计算方法相比, 降

低均匀光斑的顶部不均匀度. 机器学习的具体任务

是建立匀光目标图与实验探测图像之间的映射关

系, 方法的流程如图 3所示. 在第 1阶段, 首先收

集图像数据,  将预定义的 1000张匀光目标图像

imin 输入 G-S算法中, 以计算对应的 1000张相位

全息图. 其次, 搭建图 2所示的实验光路, 将相位

全息图加载至 SLM, 通过 CMOS相机采集实验探

测图像 imout, 并收集匀光目标图像 imin 与实验探

测图像 imout, 生成 1000对 imin 和 imout 图像, imin
中仅均匀光斑区域尺寸大小和振幅发生变化, 位置

和基本形状保持恒定. 最后, 将实验探测图像 imout
作为样本, 匀光目标图像 imin 作为标记, 在经过图

像处理后划分为训练与验证的数据集. 第 2阶段,

使用训练集的数据训练机器学习模型, 得到一个能

够将输入实验探测图像  映射到其对应的匀光

目标图像  的模型. 该模型可近似视为一个与

其输入输出相同的函数, 如 (3)式所示: 

f(imtrain
out ) = imtrain

in . (3)

imv
out imv

in

第 3阶段, 使用验证集评估机器学习模型的学习能

力, 比较验证集   的预测图 impre 与目标图  
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图 1    G-S流程图

Fig. 1. Flow chart of G-S.

 

Laser Lens

SLM 

ComputerCMOS Experimental results

Phase diagram

图 2    实验装置示意图

Fig. 2. Schematic diagram of the setup for the experiment.
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的均方误差 (mean squared error, MSE). MSE公

式如下所示: 

L =
1

m

m∑
i=1

(yi − Yi)
2
, (4)

imv
in

Impre
out

Impre
out imv

out

其中, yi 表示神经网络的输出, Yi 表示真实标签,

m 表示样本个数. 第 4阶段, 对基于机器学习的激

光匀光整形方法进行实验验证. 首先, 利用保存的

模型对预测集的目标图  进行预测, 得到预测的

新目标图 Impre. 然后使用 G-S算法计算预测目标

图 Impre 对应的相位全息图, 并将此相位全息图加

载至 SLM, 调制入射光束后, 实验探测图像  

通过 CMOS相机接收. 最后, 对比基于机器学习的

激光实验探测图像  和初始匀光结果  的均

匀光斑区域顶部不均匀度, 以验证所提出机器学习

方法的有效性. 

3   机器学习模型训练与预测
 

3.1    数据集采集与处理

搭建实验光路, 如图 4所示, 所使用的光学仪

器有: 电源、驱动器、SLM、CMOS相机、激光器以

及计算机. 其中, 激光波长为 532 nm, 激光器的驱

动电压为 3.0 V. SLM采用滨松公司生产的 X13138

反射式 LCOS-SLM, 分辨率为 1280×1024像素 ,

像元尺寸为 12.5  μm×12.5  μm,  光敏面尺寸为

16.0 mm×12.8 mm. 相机采用 THORLABS公司

生产的 CS165 CU1/M型号 CMOS相机, 其具有

3.45 μm×3.45 μm的方形像素 , 分辨率为 1440×

1080像素 .  通过计算机对 LCOS-SLM和 CMOS

进行控制.

数据集的样本和标签分别是实验探测图和匀

光目标图, 实验采集了不同匀光尺寸的 1000张探

测图以及对应的目标图, 其中探测图全部为一级衍

射光斑. 在每次训练中, 随机划分训练集和验证集,

其中训练集占比 50%, 验证集占比 50%. 不同匀光

尺寸大小的标签和样本旨在提高模型的泛化能力 [17].

数据集的处理过程中, 首先对实验探测图和匀光

目标图进行裁剪, 由于相机拍摄时, 均匀光斑区域

不在相机视野的中心, 并且相机的像素为 1440×

1080, 与目标图像素不匹配, 经过裁剪, 实验探测
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图 3    方法流程图

Fig. 3. Schematic explanation of the presented approach.
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图 4    激光匀光实验装置

Fig. 4. Experimental setup of laser beam homogenization.
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图和匀光目标图达到同样的像素值, 并且方形均匀

光斑在灰度图的中心. 其次, 由于实验探测图在均

匀光斑区域外存在杂散光, 机器学习旨在寻找目标

均匀光斑区域光强分布的关联, 杂散光会对模型训

练造成干扰. 所以, 对于实验探测图, 均匀光斑区

域外的像素值全部设置为 0. 最后, 由于 GPU训练

资源有限, 图像的像素过大会超出 GPU显存, 在

训练之前需要对数据集中的图像进行降低像素处

理. 考虑到所使用服务器的具体情况, 对原始图像

每 5×5区域的像素求均值, 步长为 5, 将图像的像

素调整为 204×204大小. 经过数据处理, 得到像素

值为 204×204像素大小的 1000张样本数据和 1000

张标签数据, 作为机器学习模型训练和验证的数据

集, 如图 5所示.

 
 

(a) (b)

图 5　实验中收集的图像数据　(a)探测结果; (b)匀光目标

Fig. 5. Image  data  collected  in  the  experiment:  (a)  Detec-

ted results; (b) beam homogenization target.
  

3.2    模型结构与超参数

本文提出的机器学习模型结构如图 6所示, 模

型输入为实验探测图, 输出为匀光目标图. 模型的

结构主要包括编码路径和解码路径两部分 [18], 编

码路径包括卷积层和两个下采样层, 卷积层使用

3×3的卷积核提取图像的特征信息 [19], 填充值为

1, 每一个卷积层后面都加入一个批量归一化层 [20]

以及修正线性单元层 (ReLU)激活函数层, 用于增

强特征表示, 如图中红色箭头所示. 下采样层通过

2×2最大池化操作将输入图像逐层进行下采样操

作, 其中步长为 2, 每个下采样层后都加入 3×3的

卷积核提取图像的特征信息, 如图中黄色箭头所示

和红色箭头所示. 解码路径中包括两个上采样层,

上采样层通过 2倍的反卷积增加图像的空间分辨

率, 并使用跳跃连接合并来自编码器的特征信息,

如图中灰色箭头和蓝色虚线箭头所示. 同样, 每个

上采样层后使用 3×3的卷积提取图像的特征信息.

最后, 使用 1×1的卷积层, 将网络的最后一层特征

图转换为最终的输出特征图. 另外, 图中最上方标

注了每一层的通道数, 即特征图的数量, 其由卷积

核数量决定. 优化器为 RMSprop, 学习率设置为

0.00001, 采用 MSE作为损失函数, 用来衡量神经

网络的预测值与真实值之间的误差, 从而指导网络

寻找最优权重参数. 

3.3    训练结果

在数据集的训练与验证过程中, MSE用作损

失函数. 每次迭代后训练集与验证集中损失函数

值的变化如图 7所示. 红色曲线代表训练集损失

(loss)曲线, 绿色曲线代表验证集损失曲线. 通过

前向传播和反向传播机制, 模型在训练轮数中持续

更新权重和偏差参数, 使这两种损失函数的值最小

化. 随着训练轮数的增加, 训练损失和验证损失均

出现逐渐下降的趋势, 最终趋于稳定并收敛至一个

较小的值. 说明模型能够很好地拟合训练数据, 并

且在验证数据上也能保持较好的性能, 表明模型没
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图 6    机器学习模型结构

Fig. 6. Machine learning model structure.
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有出现欠拟合与过拟合的问题, 有较强的泛化能

力, 对未见过的新数据集具有较高的预测准确性.

同时可以看出, 模型的训练过程相对稳定, 没有出

现突然的性能下降或波动, 证明模型的训练具有可

靠性和可重复性.

  
0.0025

0.0020

0.0015

L
o
ss
-
M

S
E

0.0010

0.0005
0 100 200 300

Number of iterations

400 500 600

Training loss

Validation loss

图 7　训练/验证 Loss-MSE 曲线

Fig. 7. Relationship  between  training/validation  Loss-MSE

and number of iterations. 

4   实验验证

搭建图 4所示的实验光路, 在相同的实验条件

下验证所提出方法对光斑均匀度的优化, 实验结果

如图 8所示.

图 8第 1行显示了 G-S算法的结果, 其中包

含目标图像, 相位全息图, 实验结果和均匀光斑区

域的光强整体分布. 在图 8(c)中, 红色方框为目标

匀光区域, 黄色方框为中央零级衍射光, 对比图在相

同的光路位置采集, 确保对比实验的科学性. 图 8(d)

为光强分布曲线, 以目标均匀光斑区域的横坐标

x 为列索引, 纵坐标为对应列的总光强值 I(x). 与G-S

算法相比, 所提出的方法在光斑均匀度方面表现出

优势, 如图 8第 2行所示. 从实验结果可以看出,

使用 G-S算法产生的均匀光斑区域靠近零级光的

地方光强值较高, 部分像素点的光强已超出相机的

阈值, 而远离零级光和靠近衍射面边缘的均匀光斑

区域光强则显著降低, 出现了光强不均匀的现象.

相比之下, 所提出的方法产生的均匀光斑区域中,

未出现光强极大的现象, 整体光强较为均匀, 没有

像素点超出相机阈值. 从光强分布可以看出, 使用G-S

算法产生的均匀光斑区域未达到顶部平坦的要求,

而所提出的方法的均匀光斑结果更接近平坦分布.

为了对两种方法进行定量比较并且验证机器

学习方法对不同匀光尺寸目标图的普适性,  对

48组不同均匀光斑尺寸的实验结果, 计算了两种

方法的顶部不均匀度如图 9所示. 为了更好地观察

规律, 横坐标 M 为均匀光斑尺寸由小到大排序的

序号, 纵坐标为顶部不均匀度.

由图 9可以看出, 当目标图匀光尺寸较小时,

使用机器学习方法前后对光强不均匀度的改进不

明显. 这是由于空间光调制器本身存在调制效率的

限制, 越靠近衍射图像中心, 衍射效率越高, 图像

亮度越高, 远离衍射中心则衍射效率降低, 也就是

靠近衍射面边缘的位置对应的衍射效率会降低, 所
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图 8    (a)—(d)目标图像、相位全息图、实验结果、G-S算法的强度分布 (第 1行)和我们提出的方法的强度分布 (第 2行)

Fig. 8. (a)–(d) Target image, the phase diagram, the experimental results,  the intensity distribution by G-S algorithm (first row)

and our proposed method (second row).
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呈现的图像亮度越低. 当匀光图像尺寸较大时, 图

像会占衍射面较大的画幅, 可明显观察到靠近衍射

中心的部分亮度高, 靠近衍射面边缘的部分亮度

低. 而对于匀光尺寸较小的目标图, 其位置与衍射

中心和衍射边缘的距离都相对较大, 既不会出现靠

近衍射面中心亮度高, 靠近衍射边缘亮度低的现

象, 光强集中在较小的区域. 所以在机器学习方法

应用前后, 其光能分布都比较集中, 机器学习对其

均匀度的改进并不明显, 导致顶部不均匀度的差异

较小. 随着匀光目标图尺寸的增大, 采用机器学习

方法的光强顶部不均匀度显著低于未使用机器学

习的情况, 证明使用机器学习方法可以提高均匀光

斑区域的顶部均匀度. 对具体的数值进行分析, 使

用机器学习方法将激光匀光整形的顶部不均匀度

相对降低了 13%, 证明了本方法的有效性和可行性. 

5   结　论

本研究在使用空间光调制器激光匀光整形方

法的基础上, 引入机器学习方法, 将实验中激光匀

光后的探测图像作为样本, 将对应的匀光目标图像

作为标记, 构建机器学习模型, 寻找匀光目标图像

与探测结果图像之间的映射关系. 对匀光的实验误

差进行补偿. 对比不使用机器学习的 SLM激光匀

光整形方法, 成功将激光匀光不均匀度相对降低

了 13%. 对比其他提高激光匀光精度的机器学习方

法, 本方法的数据集更容易采集, 模型更简单, 训

练过程更容易拟合, 训练速度更快. 该方法不仅可

以应用于 SLM激光匀光整形, 也可应用于其他任

意光强分布的激光整形以及成像光学领域.
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Fig. 9. Top nonuniformity.

物 理 学 报   Acta  Phys.  Sin.   Vol. 73, No. 16 (2024)    164205

164205-6

https://doi.org/10.3390/mi11030338
https://doi.org/10.3390/mi11030338
https://doi.org/10.3390/mi11030338
https://doi.org/10.3390/mi11030338
https://doi.org/10.3390/mi11030338
https://doi.org/10.3390/mi11030338
https://doi.org/10.3390/mi11030338
https://doi.org/10.1364/OE.443788
https://doi.org/10.1364/OE.443788
https://doi.org/10.1364/OE.443788
https://doi.org/10.1364/OE.443788
https://doi.org/10.1364/OE.443788
https://doi.org/10.1364/OE.443788
https://doi.org/10.1364/OE.443788
https://doi.org/10.1364/OE.443788
https://doi.org/10.3390/mi12060673
https://doi.org/10.3390/mi12060673
https://doi.org/10.3390/mi12060673
https://doi.org/10.3390/mi12060673
https://doi.org/10.3390/mi12060673
https://doi.org/10.3390/mi12060673
https://doi.org/10.3390/mi12060673
https://doi.org/10.1016/j.optcom.2019.01.069
https://doi.org/10.1016/j.optcom.2019.01.069
https://doi.org/10.1016/j.optcom.2019.01.069
https://doi.org/10.1016/j.optcom.2019.01.069
https://doi.org/10.1016/j.optcom.2019.01.069
https://doi.org/10.1016/j.optcom.2019.01.069
https://doi.org/10.1016/j.optcom.2019.01.069
https://doi.org/10.1016/j.optcom.2019.01.069
https://doi.org/10.1364/OE.432770
https://doi.org/10.1364/OE.432770
https://doi.org/10.1364/OE.432770
https://doi.org/10.1364/OE.432770
https://doi.org/10.1364/OE.432770
https://doi.org/10.1364/OE.432770
https://doi.org/10.1364/OE.432770
https://doi.org/10.1364/OE.27.026757
https://doi.org/10.1364/OE.27.026757
https://doi.org/10.1364/OE.27.026757
https://doi.org/10.1364/OE.27.026757
https://doi.org/10.1364/OE.27.026757
https://doi.org/10.1364/OE.27.026757
https://doi.org/10.1364/OE.27.026757
https://doi.org/10.1364/OE.27.026757
https://doi.org/10.1117/1.OE.62.2.025103
https://doi.org/10.1117/1.OE.62.2.025103
https://doi.org/10.1117/1.OE.62.2.025103
https://doi.org/10.1117/1.OE.62.2.025103
https://doi.org/10.1117/1.OE.62.2.025103
https://doi.org/10.1117/1.OE.62.2.025103
https://doi.org/10.3390/app10165485
https://doi.org/10.3390/app10165485
https://doi.org/10.3390/app10165485
https://doi.org/10.3390/app10165485
https://doi.org/10.3390/app10165485
https://doi.org/10.3390/app10165485
https://doi.org/10.3390/app10165485
https://doi.org/10.1364/OE.413723
https://doi.org/10.1364/OE.413723
https://doi.org/10.1364/OE.413723
https://doi.org/10.1364/OE.413723
https://doi.org/10.1364/OE.413723
https://doi.org/10.1364/OE.413723
https://doi.org/10.1364/OE.413723
https://doi.org/10.1364/OE.413723
https://doi.org/10.1117/1.OE.61.12.125103
https://doi.org/10.1117/1.OE.61.12.125103
https://doi.org/10.1117/1.OE.61.12.125103
https://doi.org/10.1117/1.OE.61.12.125103
https://doi.org/10.1117/1.OE.61.12.125103
https://doi.org/10.1117/1.OE.61.12.125103
https://doi.org/10.1364/OE.422115
https://doi.org/10.1364/OE.422115
https://doi.org/10.1364/OE.422115
https://doi.org/10.1364/OE.422115
https://doi.org/10.1364/OE.422115
https://doi.org/10.1364/OE.422115
https://doi.org/10.1364/OE.422115
https://doi.org/10.1364/OE.422115
https://doi.org/10.1364/AO.441418
https://doi.org/10.1364/AO.441418
https://doi.org/10.1364/AO.441418
https://doi.org/10.1364/AO.441418
https://doi.org/10.1364/AO.441418
https://doi.org/10.1364/AO.441418
https://doi.org/10.1364/OE.432745
https://doi.org/10.1364/OE.432745
https://doi.org/10.1364/OE.432745
https://doi.org/10.1364/OE.432745
https://doi.org/10.1364/OE.432745
https://doi.org/10.1364/OE.432745
https://doi.org/10.1364/OE.432745
https://doi.org/10.1364/OE.432745
https://doi.org/10.1364/OE.459460
https://doi.org/10.1364/OE.459460
https://doi.org/10.1364/OE.459460
https://doi.org/10.1364/OE.459460
https://doi.org/10.1364/OE.459460
https://doi.org/10.1364/OE.459460
https://doi.org/10.1364/OE.440956
https://doi.org/10.1364/OE.440956
https://doi.org/10.1364/OE.440956
https://doi.org/10.1364/OE.440956
https://doi.org/10.1364/OE.440956
https://doi.org/10.1364/OE.440956
https://doi.org/10.1364/OE.440956
https://doi.org/10.1364/OL.27.001463
https://doi.org/10.1364/OL.27.001463
https://doi.org/10.1364/OL.27.001463
https://doi.org/10.1364/OL.27.001463
https://doi.org/10.1364/OL.27.001463
https://doi.org/10.1364/OL.27.001463
https://doi.org/10.1364/OL.27.001463
https://doi.org/10.2112/JCR-SI104-046.1
https://doi.org/10.2112/JCR-SI104-046.1
https://doi.org/10.2112/JCR-SI104-046.1
https://doi.org/10.2112/JCR-SI104-046.1
https://doi.org/10.2112/JCR-SI104-046.1
https://doi.org/10.2112/JCR-SI104-046.1
https://doi.org/10.2112/JCR-SI104-046.1
https://doi.org/10.1364/OL.43.004240
https://doi.org/10.1364/OL.43.004240
https://doi.org/10.1364/OL.43.004240
https://doi.org/10.1364/OL.43.004240
https://doi.org/10.1364/OL.43.004240
https://doi.org/10.1364/OL.43.004240
https://doi.org/10.1364/OL.43.004240
https://doi.org/10.1364/OE.399624
https://doi.org/10.1364/OE.399624
https://doi.org/10.1364/OE.399624
https://doi.org/10.1364/OE.399624
https://doi.org/10.1364/OE.399624
https://doi.org/10.1364/OE.399624
https://doi.org/10.1364/OE.399624
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1


 

Machine learning based laser homogenization method*

Zhang Xu     Ding Jin -Min     Hou Chen -Yang     Zhao Yi -Ming 

Liu Hong -Wei     Liang Sheng †

(National Physical Experiment Teaching Demonstration Center, Key Laboratory of Education Ministry on Luminescence and Optical

Information Technology, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China)

( Received 27 May 2024; revised manuscript received 7 July 2024 )

Abstract

Laser is widely used in various fields such as laser processing, optical imaging, and optical trapping due to

its high monochromaticity, directionality, and high energy density. However, the beam generated by the laser is

a Gaussian beam with non-uniform distribution of optical energy, and this non-uniform distribution affects the

interaction  between  the  laser  and  the  matter.  Therefore,  it  is  necessary  to  reshape  the  Gaussian  beam  into

homogenized light spots with uniform distribution of optical energy. Laser beam homogenization method aims

to  change  the  spatial  distribution  of  the  Gaussian  beam,  precisely  controlling  the  shape  and  intensity  of  the

laser  beam  to  achieve  homogenized  light  spots.  However,  the  existing  laser  beam  homogenization  methods

encounter  some  problems  such  as  complicated  component  preparation  and  poor  flexibility.  They  also  fail  to

address  experimental  errors  caused  by  stray  light  and  zero-order  light  interference,  leading  to  discrepancies

between the experimental  results  and the expected results.  These limitations seriously restrict  the widespread

application of laser technology in various fields.

　　A laser homogenization method based on machine learning is proposed for spatial light modulator (SLM)

laser  homogenization  in  this  work.  The  preliminary  approach  to  laser  homogenization  is  to  generate  a  phase

hologram  by  using  the  Gerchberg-Saxton  (G-S)  algorithm  and  modulate  the  incident  light  beam  into

homogenized light  spots  by using  an SLM. However,  the  inherent  homogenization error  of  the  SLM prevents

laser  homogenization  from  improving  uniformity.  The  machine  learning  method  is  proposed  as  a  means  of

compensating for homogenization errors, thereby improving the uniformity of the light spot. The corresponding

supervised learning regression task on the experimental dataset establishes mapping relationships between the

homogenization  target  images  and  the  experimental  detection  images.  The  results  of  homogenization  error

compensation  are  validated  through  experiments.  Compared  with  the  traditional  SLM  laser  homogenization

methods, the proposed method reduces the non-uniformity of the light spot by 13%. The laser homogenization

method based on machine learning is an efficient way to achieve laser beam homogenization. The proposed laser

beam  homogenization  method  can  serve  as  a  reference  for  machine  learning-based  method.  This  method

possesses significant technical value for laser applications such as laser processing, optical imaging, and optical

manipulation.  Furthermore,  it  can  provide  guidance  and  reference  for  utilizing  artificial  intelligence  in

addressing optical problems.
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