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LD: Laser diode
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HS: Heat sink

RLCS: Ring light conversion system
LC: Laser crystal
OC: Output coupling
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Fig. 1. Schematic of an annular beam end pumped thin-disk

vortex laser.
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Table 1.  Parameters of laser crystals®!.
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Nd:YAG 4560 317 0.25 7.5x106 14 7.3x10°¢
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Nd:YVO, 4220 133 0.33 4.43x10° 5.2 8.5x10°6
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2 NA:YAG L RAIBAS  (a) ZHRRIEA: (b) =B ATE A5 (c) Bl ITELE: () B TR A5
Fig. 2. Temperature and thermal deformation of Nd:YAG crystal: (a) 3D temperature distribution; (b) 3D deformation distribution;

(c) temperature in the section plane; (d) deformation in the section plane.
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Fig. 3. Temperature and thermal deformation of the three laser crystals under different pump power: (a) Temperature of Nd:YAG;
(b) deformation of Nd:YAG; (c) temperature of Nd:YLF; (d) deformation of Nd:YLF; (e) temperature of Nd:YVOy; (f) deformation

of Nd:YVO,.

Tnax/C

& 4

Dpax/pm

1000

800

600

400

200

I8 T IR A B TRl D R 2 A

(a) —e— Nd:YAG
=8 = Nd:YLF
i Nd:YVO,
_ -
- £
- 5]
L Plie <
-
a”
L -
-
,
20 40 60 80 100
Pump power/W
(c) —e— Nd:YAG -1
=8 = Nd:YLF P 4
Nd:YVO, 7
7
B 7
7 g
- Z
L P g
s Q
» <
r 7
7
-
r 7
Y.
20 40 60 80 100

Pump power/W

200

150

100

50

0.5

©
&

e
)

Pump power/W

(b) —e— Nd:YAG
=8 = Nd:YLF
| Nd:YVO,
~
-
-
-,
-
- -
v
-
-
-
L -,
-
-
/
20 40 60 80 100
Pump power/W
(d) —e— Nd:YAG A
=8 = Nd:YLF s
r Nd:YVO, Phd
7
7’
r 7’
P
7
e
B -
7
7
e
Y.
20 40 60 80 100

(a) Tl (b) B i 5O IR%E; (o) BORPIRAE; (d) BRIIEZ S h.o Bz

Fig. 4. Variation of temperature and thermal deformation with pump power: (a) Maximum temperature; (b) difference between the

maximum temperature and the center temperature; (c) maximum thermal deformation; (d) difference between the maximum

thermal deformation and the center thermal deformation.
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Fig. 6. Variation of the modal purity with pump power.
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Fig. 7. Temperature and deformation of the three laser crystals under different absorption coefficient: (a) Temperature of Nd:YAG;
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Fig. 8. Variation of temperature and thermal deformation with absorption coefficient: (a) Maximum temperature; (b) difference
between the maximum temperature and the center temperature; (c¢) maximum thermal deformation; (d) difference between the
maximum thermal deformation and the center thermal deformation.

1.0 g s
> —— LGy,1 mode .8 w0 g
= 0.8f—=-0.5 mm~! g é i
g a1 mm-1 | g
2 06+ 2mm-? 2% 0.6 —
9 Sz 3
£ 04} 3 -
:, 0.4 g
E [
= X 0.2 %
o 2 05 10 20 0o 2
Absorption coefficient/mm~?
- g, 10 10 2
> — LGo,1 mode T w0 L0 " g
2O 5Z 06 0.8 &
g e —1 =2 o -
2 06072 mm £ 04 :
N e 28 0:2 06 5
> 04} g
- = 1, 04 2
2 02 3 :
= 0.2 60'1;3/ 567 . 0. E
e e O“de, 8910' 2.0 3
o » 05 10 2 0o £
Absorption coefficient/mm™ 1
1.0 - . y E?
> —— LGy, mode 3 o0 89 ) © :
5 - . {
= 0.8p—=-0.5mm-! 2 £ os 2
- S S 04 H
E i - - e .
‘ng 0.6 2 mm~! ;f : 0.3 e E
S 04} . : :
2 : = o1, 04 g
T 0.2f / Q@dl :
- / - 0.2 Z
"""" %""j : R 8910 2.0 3
o @ 05 10 2 o Z
@/mm Absorption coefficient /mm~*

E 9 REMIKRECT G ABGESH  (a) Nd:YAG #; (b) Nd:YAG #i3%; (c) Nd:YLF #3%; (d) Nd:YLF #i3#%; (e) Nd:YVO,
B4, (f) N&:YVO, #i

Fig. 9. Mode distribution and mode structure under different absorption coefficient: (a) Nd:YAG mode distribution; (b) Nd:YAG
mode structure; (¢) Nd:YLF mode distribution; (d) Nd:YLF mode structure; (e) Nd:YVO, mode distribution; (f) Nd:YVO, mode
structure.

164206-8


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

¥ 1B ¥ Acta Phys. Sin.

Vol. 73, No. 16 (2024)

164206

0.60
0.55
>
.E 0.50
=5 —o— Nd:YAG
& 045t —= = Nd:YLF
< = -
< - . Nd:YVO,
) - -
2 040} --o__ P 12(b) AT 0
=
0.35 f AT, Fifl i 1A JBEJE 1
0.30 b L
0.5 1.0 2.0
Absorption coefficient/mm—1!
" 4 I A 18 T DL 2R P 1
& 10 ML Al B E Wl R oy 28 1k HJ I (A 1
Fig. 10. Variation of the modal purity with absorption coef-
ficient.
400 6
(b)
g
(=%
300 =
v g
) 5
E g
-~ —
2 200 S
[ [}
g o
3
[}
& 100 :
o
H
O 1 1 1 1 1 1 1 1 1 _1 1 1 1
-5 -4 -3-2-10 1 2 3 4 5 —5
z/mm
1000 15
(c) —— 0.5 mm g (d)
800 §
' S 10t
o) <
5 600 g
- —
5 -
2 400 © 5t
g el
B g
-
200 i
H
0
O 1 1 1 1
-5 -4 -3-2-10 1 2 3 4 5
z/mm
1200
(e) —— 0.5 mm
1000 E
=
% 800 2
) ©
2 :
2 600 e
[ <
E. o
400 =
& £
£
200 &
O 1 1 1
-5 -4 -3-2-10 1 2 3 4 5 -5
z/mm
B 11 ARRVEEET 3 Fhab R iR K HIp s

AR ZE (RN, H LA T AR R T S T AT Ak
PIPAIEAS | AR S T B R R /MY R . B 12(a)
IR T S5 IR T B R BE () B A, i IR
i AR U5 ) 38 T T R, T AR R R N
L, B ey i 5 e YL BE 1 22
L NTTR N 1Y NG
OV T PR AL AR P 12(c) SRRV AR
Dinax Fifl A R JE B AR A, 5 G BRI ALR i it R T2
K, Hrh Nd:YLF 8k i Rh%
R A 12(d) o] WL, ek BIRAE S pn B AR /Y

ZE{EL A Dy Pt AR5 BE A4 R I6E

—— 0.5 mm

-4 -3 -2-10 1 2 3 4 5

z/mm

—— 0.5 mm
—=— 1.0 mm
—A— 1.5 mm

v 2.0 mm

-5 -4-3-2-10 1 2 3 4 5

z/mm

) 1 1 1 1 1 1 1 1 1

-4 -3 -2-1 0 1 2 3 4 5

z/mm

(a) Nd:YAG #iE; (b) Nd:YAG JEAS; (¢) Nd:YLF #RJE; (d) Nd:YLF JEZF; (e) Nd:YVO,

W (f) Nd:YVO, B 7%

Fig. 11. Temperature and thermal deformation of the three laser crystals under different crystal thickness: (a) Temperature of
Nd:YAG; (b) deformation of Nd:YAG; (c) temperature of Nd:YLF; (d) deformation of Nd:YLF; (e) temperature of Nd:YVOy;

(f) deformation of Nd:YVO,.

164206-9


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

#) 32 2 3R Acta Phys. Sin. Vol. 73, No. 16 (2024) 164206

1200 350
(a) —— Nd:YAG (b)
1000 300 K —= - Nd:YLF
250 + N Nd:YVO,
P 800} - & 200}
] P —— Nd:YAG E‘? :
£ 600 .7 — - Nd:YLF a 159¢
r Nd:YVO, 100 +
400 +
’/'/‘-—"".’k*_“ 50
200 . . 0 . .
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
Thickness/mm Thickness/mm
14 1.2
(¢) —— Nd:YAG P “ \(d) —— Nd:YAG
121 W Nd:YLF L 1Oy —= - Nd:YLF
10+ Nd:YVO, < \ Nd:YVO
g -7 g O8N !
= 8t R =,
3 e 2 06}
E 6 - Q
A Pid <4 p4p
4@
-
2F 0.2t
0 1 1 0 -
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
Thickness/mm Thickness/mm

12 R R BIE ARG RS R R (a) momifE; (b) om0 R BE2EME; (o) IRHMIBAE; (d) s KIS0
PIBALE 2 MH

Fig. 12. Variation of temperature and thermal deformation with crystal thickness: (a) Maximum temperature; (b) difference
between the maximum temperature and the center temperature; (c¢) maximum thermal deformation; (d) difference between the
maximum thermal deformation and the center thermal deformation.

1.0 3 10 1o ¥
>, - LGop,; mode B (b) =
£ 0.8f=-05mm §g D8 0.8
g -4+ 1.0 mm o= O 2
£ o6l 2.0 0.4
s v 1.5 mm S92 0.6 =
S ~v- 2.0 mm % 3 0 9
z 04 = 0, 04 £
5] % 234 o
S 0.2} g, *5 Z
~ ; d’a/% 6789 0.2 B

0 — @ =
4 -3 €, 10 g5 10 15 20M, 2
Thickness/mul

1.0 3 Lo 2
. -~ LGo,; mode E a0 1.0 (d) E
£ 081=-05mm ££ D8 0.8
o . [
g -+ 1.0 mm £ 04 S
< 0.6 2 .

E 1.5 mm 5 q%.) 0.2 0.6 =
o ~-2.0 mm 3 0 9
£ 04f = 0, 04 £
] 0.2 & 234 )
Q 2F A 5 2
= dfcz/w 678'9 02 &
S— @ =

—4 -3 €, 10 g5 1.0 15 20 2

Thickness/ mm

1.0 3 1.0 ¥
5 -~ LGy,; mode '8 a0 1.0 () g
£ 08f=-05mm g5 08 0.8 @
g =4+ 1.0 mm o= 2
£ o6l Z .0 04
5 3o mm 5% 02 06 3
o) ~v- 2.0 mm o) 0
> 04} i s}
;g ‘ ~ 04 0.4 g
3 02} ) Ry, Pdy 2
= o/ “t BT 2

e . e, 910 1.5 2.0 °
4 -3 ) 05 1.0+ 0

Thickness/mmm

B 13 RIEJEE T A5 FBRE 5K (a) Nd:YAG Bi3; (b) Nd:YAG #i3%; (c) Nd:YLF #i3%; (d) Nd:YLF #i%; (e) Nd:YVO,
BE; (f) Nd:YVO, B3

Fig. 13. Mode distribution and mode structure under different thickness: (a) Nd:YAG mode distribution; (b) Nd:YAG mode struc-
ture; (¢) Nd:YLF mode distribution; (d) Nd:YLF mode structure; (¢) Nd:YVO, mode distribution; (f) Nd:YVO, mode structure.

164206-10


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

) 32 2 3R Acta Phys. Sin. Vol. 73, No. 16 (2024)

164206

s A JEL B A 3 o A BOARE 1% 45 4 1 5 i)
Bl 13 . Bl S AR REJEE /N, A3 50 A3 1) W
ST, AR 13(b) v LA i, R D8N v ik
AT 2 | HE . SRR
0.5, 1, 1.5 Fl 2 mm A LGy, AT 5 L)
43514 0.54, 0.61, 0.69 F10.78.

Pl 14 A = 4l e o i o A B B 1 8 . A5 X
2l 35 B gt R JEE B P 3 R 2 T 8, Nd:YVO,
PRl B TS I ARRPR /DN, Nd:YAG Aaliig
JERTHRRYRER. AJEREY 0.5 mm B, Nd:YVO,
I Nd:YLF X aliid 52 23 510 0.32 Fi1 0.40, J&
FERER ] 2 mm B, AT Nd:YVO, Al Nd:YLF )
B alivg s 230 B TEZ 0.46 F1 0.56.

0.8
—o— Nd:YAG
—a = Nd:YLF
0.7r Nd:YVO,
>
=
2 06}
a
= --—"
T 05f -~
-
= -
04ap —
0.3 . .
0.5 1.0 1.5 2.0
Thickness/mm

I 14 B Al B R R A5 L R AL
Fig. 14. Variation of modal purity with crystal thickness.

4 % i

e @ON=WIE STSIT5 e R PV )31 &) ok 1410)
R B JR SN AT T AR S RS T AR
T D23 AR W R B R R R X Nd:YAG,
Nd:YLF #l Nd:YVO, # 5 IR BERHOE A5 & 5 1Y
S FLHE. PR IR ' v T80 2 R i TR HACRRTS A AR 1 iR
JE 5 MPIE AR SR A, FEAE R 280 4500 T
Nd:YVO, i I FF 5% & , NAd:YAG IR JF & 1% i
Nd:YLF B #IE 2 5 K, Nd:YAG B HIE 28 /).
S 2GR 431 s 25 BRARRESA, HhBBEE
(i = 1 95RO N O =85 B
T AR A ST 2R ORI i R V5 X AR o St A7 —
TE RN WSRO, B R R AR
FEW/ N, B R TE R 3 TE e . AR SO SRR R
WO R D RIR B RO LR, 2 a1 AR BRAR 43 A 1 AL N
WO A B R — BN R, TEm YRR
RO GAR BT, SRR IS ZRESORN AR R B 1) 1

THELE G 3 ARG R TSR A T 2R AL,

S 30k

(12]
(13]

(14]

(15]
(16]

(17]

18]
[19]
[20]

(21]

(22]

23]

[24]

164206-11

Wang J, Yang J Y, Fazal I M, et al. 2012 Nat. Photonics 6
488

Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas’ko V,
Barnett S M, Franke-Arnold S, 2004 Opt. Express 12 5448
Willner A E, Zhao Z, Ren Y X, Li L, Xie G D, Song H Q, Liu
C, Zhang R Z, Bao C J, Pang K 2018 Opt. Commun. 408 21
Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013
Science 341 537

Belmonte A, Rosales-Guzman C, Torres J P 2015 Optica 2
1002

Yang W D, Qiu X D, Chen L X 2020 Chin. J. Lasers 47
0500013 (in Chinese) [#fHi4R, HBEAR, PRELAH 2020 HEHEOL
47 0500013]

Yang S H, Liao Y Q, Lin X T, Liu X Y, Qi R Y, Hao Y 2021
Infrared Laser Eng. 50 20211040 (in Chinese) [#% 75 1%, BE3k
B, AR, XIS, SEA B, AR 2021 2050 5O TR 50
20211040]

Jantzi A, Jemison W, Laux A, Mullen L, Cochenour B 2018
Opt. Express 26 2668

Baghdady J, Miller K, Morgan K, et al. 2016 Opt. Express 24
9794

Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong
M L, Yuan X C 2019 Light Sci. Appl. 8 90

Liu Q, Pan J, Wan Z S, Shen Y J, Zhang H K, Fu X, Gong
M L 2020 Chin. J. Lasers 47 0500006 (in Chinese) [#il3%, %
W, TR, WA, sRAEE, AR, LI HE 2020 T EBOE 47
0500006]

Forbes A 2019 Laser Photonics Rev. 13 1900140

Forbes A, Oliveira M D, Dennis M R 2021 Nat. Photonics 15
253

Sun X B, Zhu Q H, Liu L. Q, Huang W Q, Zhang Y, Wang W
Y, Geng Y C 2017 Laser Optoelectron. P. 54 070001 (in
Chinese) [FMEI, AJafe, X238, BIORNE, TR, £303, BT
#2017 BWOLEOLH T ##EE 54 070001]

Fu S'Y, Gao C Q 2019 Acta Opt. Sin. 39 0126014 (in
Chinese) [[fI38, BF&H 2019 624 39 0126014)

Chang N, Jin L W, Gao W 2019 Acta Opt. Sin. 39 0319001
(in Chinese) [#T", 432, BHi 2019 JE # %4l 39 0319001]
Zhao Y G, Chen B, Zheng C S, Jia D W, Dong J F, Guo J,
Wang Z X, Yu H H, Zhang H J 2024 Laser Photonics Rev. 18
2301089

Pan J, Shen Y J, Wan Z S, Fu X, Zhang H K, Liu Q 2020
Phys. Rev. Appl. 14 044048

Zhao Y G, Wang L, Chen W D, et al. 2021 Photonics Res. 9
357

Qiao Z, Xie G Q, Wu Y H, Yuan P, Ma J G, Qian L J, Fan
D Y 2018 Laser Photonics Rev. 12 1800019

Song X L, Li B B, Wang S Y, Cai D F, Wen J G, Guo Z
2008 Infrared Laser Eng. 37 73 (in Chinese) [/, 2 FR,
FAE, #AI5, SCGER, 3R 2008 LIAMFHOE TR 37 73]
Yao Y C, Liu D L, Huang C Y, Xu G W, Wang B 2016 Acta
Photonica Sin. 45 131 (in Chinese) [Wk& AL, XT3k, ¥4 =,
RERE, F U1 2016 Je 72440 45 131]

Fang H L 2014 Optical Resonators and Gravitational Wave
Detection (Beijing: Science Press ) pp78-80 (in Chinese) [/t
F12014 e I R IE S 51 BRI (FL s B R 5
78—80 7]

Koechner W 2013 Solid-State Laser Engineering (New York:
Springer) pp46-83


https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1038/nphoton.2012.138
https://doi.org/10.1364/OPEX.12.005448
https://doi.org/10.1364/OPEX.12.005448
https://doi.org/10.1364/OPEX.12.005448
https://doi.org/10.1364/OPEX.12.005448
https://doi.org/10.1364/OPEX.12.005448
https://doi.org/10.1364/OPEX.12.005448
https://doi.org/10.1364/OPEX.12.005448
https://doi.org/10.1016/j.optcom.2017.08.002
https://doi.org/10.1016/j.optcom.2017.08.002
https://doi.org/10.1016/j.optcom.2017.08.002
https://doi.org/10.1016/j.optcom.2017.08.002
https://doi.org/10.1016/j.optcom.2017.08.002
https://doi.org/10.1016/j.optcom.2017.08.002
https://doi.org/10.1016/j.optcom.2017.08.002
https://doi.org/10.1126/science.1239936
https://doi.org/10.1126/science.1239936
https://doi.org/10.1126/science.1239936
https://doi.org/10.1126/science.1239936
https://doi.org/10.1126/science.1239936
https://doi.org/10.1126/science.1239936
https://doi.org/10.1364/OPTICA.2.001002
https://doi.org/10.1364/OPTICA.2.001002
https://doi.org/10.1364/OPTICA.2.001002
https://doi.org/10.1364/OPTICA.2.001002
https://doi.org/10.1364/OPTICA.2.001002
https://doi.org/10.1364/OPTICA.2.001002
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/CJL202047.0500013
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.3788/IRLA20211040
https://doi.org/10.1364/OE.26.002668
https://doi.org/10.1364/OE.26.002668
https://doi.org/10.1364/OE.26.002668
https://doi.org/10.1364/OE.26.002668
https://doi.org/10.1364/OE.26.002668
https://doi.org/10.1364/OE.26.002668
https://doi.org/10.1364/OE.24.009794
https://doi.org/10.1364/OE.24.009794
https://doi.org/10.1364/OE.24.009794
https://doi.org/10.1364/OE.24.009794
https://doi.org/10.1364/OE.24.009794
https://doi.org/10.1364/OE.24.009794
https://doi.org/10.1038/s41377-019-0194-2
https://doi.org/10.1038/s41377-019-0194-2
https://doi.org/10.1038/s41377-019-0194-2
https://doi.org/10.1038/s41377-019-0194-2
https://doi.org/10.1038/s41377-019-0194-2
https://doi.org/10.1038/s41377-019-0194-2
https://doi.org/10.1038/s41377-019-0194-2
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.3788/CJL202047.0500006
https://doi.org/10.1002/lpor.201900140
https://doi.org/10.1002/lpor.201900140
https://doi.org/10.1002/lpor.201900140
https://doi.org/10.1002/lpor.201900140
https://doi.org/10.1002/lpor.201900140
https://doi.org/10.1002/lpor.201900140
https://doi.org/10.1002/lpor.201900140
https://doi.org/10.1038/s41566-021-00780-4
https://doi.org/10.1038/s41566-021-00780-4
https://doi.org/10.1038/s41566-021-00780-4
https://doi.org/10.1038/s41566-021-00780-4
https://doi.org/10.1038/s41566-021-00780-4
https://doi.org/10.1038/s41566-021-00780-4
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/LOP54.070001
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0126014
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.3788/AOS201939.0319001
https://doi.org/10.1002/lpor.202301089
https://doi.org/10.1002/lpor.202301089
https://doi.org/10.1002/lpor.202301089
https://doi.org/10.1002/lpor.202301089
https://doi.org/10.1002/lpor.202301089
https://doi.org/10.1002/lpor.202301089
https://doi.org/10.1103/PhysRevApplied.14.044048
https://doi.org/10.1103/PhysRevApplied.14.044048
https://doi.org/10.1103/PhysRevApplied.14.044048
https://doi.org/10.1103/PhysRevApplied.14.044048
https://doi.org/10.1103/PhysRevApplied.14.044048
https://doi.org/10.1103/PhysRevApplied.14.044048
https://doi.org/10.1364/PRJ.413276
https://doi.org/10.1364/PRJ.413276
https://doi.org/10.1364/PRJ.413276
https://doi.org/10.1364/PRJ.413276
https://doi.org/10.1364/PRJ.413276
https://doi.org/10.1364/PRJ.413276
https://doi.org/10.1002/lpor.201800019
https://doi.org/10.1002/lpor.201800019
https://doi.org/10.1002/lpor.201800019
https://doi.org/10.1002/lpor.201800019
https://doi.org/10.1002/lpor.201800019
https://doi.org/10.1002/lpor.201800019
https://doi.org/10.1002/lpor.201800019
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3969/j.issn.1007-2276.2008.01.016
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://doi.org/10.3788/gzxb20164507.0714001
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
https://www.ecsponline.com/goods.php?id=167716
http://dx.doi.org/10.1007/978-1-4757-8519-7
http://dx.doi.org/10.1007/978-1-4757-8519-7
http://dx.doi.org/10.1007/978-1-4757-8519-7
http://dx.doi.org/10.1007/978-1-4757-8519-7
http://dx.doi.org/10.1007/978-1-4757-8519-7
http://dx.doi.org/10.1007/978-1-4757-8519-7
http://dx.doi.org/10.1007/978-1-4757-8519-7
http://dx.doi.org/10.1007/978-1-4757-8519-7
http://dx.doi.org/10.1007/978-1-4757-8519-7
http://dx.doi.org/10.1007/978-1-4757-8519-7
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

#) 32 2 3R Acta Phys. Sin. Vol. 73, No. 16 (2024) 164206

Modal structure of high power thin-disk vortex
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Abstract

Optical vortex beam has wide applications in areas of optical communication, lidar detection and optical
trapping. To increase the operating distance, a high-power vortex laser source is necessary in these applications.
However, the purity of the output vortex beam decreases with the pump power increasing due to the thermal
effect of the laser medium. Therefore, modal field degeneration induced by thermal effect of laser medium has
become a key problem in high-power vortex solid-state laser. To investigate this modal field degeneration, the
heat transfer and thermal deformation model of an annular beam end pumped thin-disk vortex laser (Fig. (a)) is
established. The phase difference of the thermal effect is calculated based on this model. Then, the quadratic
term is separated from the phase difference. The non-quadratic term, as a small perturbation, is substituted into
the diffraction integral equation of the laser cavity. The modal field structure is obtained by using the
perturbation method. The variations of the modal structure with pump power, absorption coefficient and crystal
thickness are investigated for three kinds of laser crystals, i.e. Nd:YAG, Nd:YLF and Nd:YVO,. The results
show that the modal field under thermal effect presents obvious deviation from the ideal mode at high power,
and the modal structure shows that it contains many higher-order radial modes, with the angular mode order
unchanged. Hence, the radial modal spectrum is broadened by the thermal effect. For an ideal vortex laser
without thermal effect operating on the radial mode order 0 and angular mode order 1, Fig. (b) shows the
modal structures with thermal effect under different pump power values with a laser crystal thickness of 1 mm.
The ratio of the higher-order modes increases and the modal structure becomes more and more complex with
the pump power increasing. The ratios of the ideal mode are 0.99, 0.97, 0.90, 0.79 and 0.61, under the pump
power of 10 W, 20 W, 40 W, 60 W and 100 W, respectively. Moreover, the Nd:YVO, laser has the largest and
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the Nd:YAG laser has the smallest modal spectrum broadening under the same pump power. Figure (c) shows
the variation of the modal purity with the pump power. The modal purity of the Nd:YVO, and the Nd:YLF
laser decrease to 0.35 and 0.44 at the pump power of 100 W, respectively. We also investigate the modal
structures under different absorption coefficients and crystal thickness values. A larger absorption coefficient or
a smaller crystal thickness leads to a larger radial modal spectrum broadening and a smaller modal purity.
These results indicate that in the design of high-power thin-disk vortex laser, it is necessary to comprehensively
optimize the disk thickness and the absorption coefficient, and consider modal spectrum broadening as well.

Keywords: solid-state laser, vortex beam, thermal effect, radial modal spectrum broadening
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