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Fig. 1. Framework of deep neural network-based VLDS
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Table 1. Network structure of the VLDSNet.
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Fig. 2. Loss values of VLDSNet at the training stage.
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Fig. 3. Simulation results of VLDSNet driven by uncorrelated noise: (a) Uniformly distributed noise; (b) Gaussian white noise.
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Table 2.  Comparison of numerical divergence between VLDSNet and FD.
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1 0.1 8.6 RAHL 31.9 RAEHL
10 0.1 6.0 REHL 7.0 REHL
100 0.1 5.0 KA 5.0 RAEHL
0.77 0.50
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0.62 0.44 ¢
// ]
S S o
«Q Q.
L
0.47 0.38 | %
ol b
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; :
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0.5 0 0.1 0.2 0.3 0.4 0.5
0 P

€ 4  VLDSNet 7E K F2 G5 M 5 K 2 iy AL 40 45 2R

(a) KRR F] SCHEME RS ; (b) A2 B] SR R

Fig. 4. Simulation results of VLDSNet driven by long-range correlated noises: (a) Long-range temporally correlated noise; (b) long-

range spatially correlated noise.

160501-5


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

¥ 1B ¥ Acta Phys. Sin.

Vol. 73, No. 16 (2024)

160501

—10

0 1024 2048 3072 4096

—-25
(b)
—30

—35F

h(x)

—40

—45 F

—50 . . .
0 1024 2048 3072 4096

—150

—200

—250

~300 . . .
0 1024 2048 3072 4096

x

L@

0 1024 2048 3072 4096

x

0 1024 2048 3072 4096

x

0 1024 2048 3072 4096

x

B 5 KARIRIRIZS G IR S B VLDS RATERA/E KW B LTI (a) 0= 0.05: (b) 0= 0.25; (c) §=0.45; (d) p=

0.05; (e) p=0.25; (f) p=0.45

Fig. 5. Surface morphologies of VLDS system driven by long range temporally and spatially correlated noises in the steady growth
regions: (a) € =0.05; (b) 6 =0.25; (c) 6 =0.45;(d) p=0.05; (e) p=0.25; (f) p=10.45.
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Abstract

The Villain-Lai-Das Sarma (VLDS) equation has received much attention in surface growth dynamics due

to its effective description of molecular beam epitaxy (MBE) growth process. However, the scaling exponent of

the VLDS equation driven by long-range correlated noise is still unclear, because different analytical

approximation methods yield inconsistent results. The nonlinear term in the VLDS equation challenges the
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numerical simulation methods, which often leads to the problem of numerical divergence. In the existing
numerical approaches, the exponential decay techniques are mainly used to replace nonlinear terms to alleviate
the numerical divergence. However, recent studies have shown that these methods may change the scaling
exponent and universality class of the growth system. Therefore, we propose a novel deep neural network-based
method to address this problem in this work. First, we construct a fully convolutional neural network to
characterize the deterministic terms in the VLDS equation. To train the neural network, we generate training
data by using the traditional finite-difference method before numerical divergence occurs. Then, we train the
neural network to represent the deterministic terms, and perform simulations of VLDS driven by long-range
temporally and spatially correlated noises based on the neural networks. The simulation results demonstrate
that the deep neural networks constructed here possess good numerical stability. It can obtain reliable scaling
exponents of the VLDS equation driven by different uncorrelated noise and correlated noise. Furthermore, in
this work, it is also found that the VLDS system driven by long-range correlated noise exhibits a mound-like
morphology when the temporal correlation exponent is large enough, while the growing surface morphology
driven by spatially correlated noise still presents a self-affine fractal structure, independent of the spatial
correlation exponent.
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