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Villain-Lai-Das Sarma (VLDS)方程因其能够有效描述分子束外延生长过程而在表面生长动力学等领域

中备受关注. 然而, 长程关联噪声驱动下的 VLDS方程的标度结果尚不明确, 不同解析近似方法所得的标度

结果仍不自洽. 在数值模拟方面, 由于非线性项的存在, VLDS方程一直存在数值发散的问题. 当前主要引入

指数衰减技术替换非线性项以缓解数值发散的问题, 但是最近研究表明, 这种方法会导致所获得的标度指数

发生歧变. 因此本文基于深度神经网络来表征 VLDS方程中的各个确定项, 并基于数值稳定型神经网络分别

对含长程时间和空间关联噪声的 VLDS系统进行有效的数值模拟. 结果表明, 我们所构建的深度神经网络具

有良好的数值计算稳定性和泛化性, 可以获得不同关联噪声驱动下的 VLDS方程的可靠标度指数. 同时, 本

文还发现长程时间关联噪声驱动的 VLDS系统在时间关联指数较大时呈现谷堆状的表面形貌, 而空间关联

噪声驱动下的表面形貌则仍然呈现自仿射分形结构.
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1   引　言

分子束外延 (molecular beam epitaxy, MBE)

生长技术 [1–3] 在半导体物理、激光物理以及表面物

理等领域有着重要的应用 [4,5]. 为了刻画MBE的动

力学生长过程, Villain[6], Lai和 Das Sarma[7] 提出

了 Villain-Lai-Das Sarma (VLDS)方程. 该方程因

能够有效描述 MBE生长时的长波涨落和动力学

标度行为而引起了广泛关注. VLDS方程为 

∂h(x, t)

∂t
=−ν∇4h(x, t) + λ∇2[∇h(x, t)]2+η(x, t),

(1)

h(x, t)其中  表示 t 时刻 x 位置处的表面高度, 方程

左边表示表面高度随时间的变化率, 描述了表面在

时间上的演化过程. 方程右边第 1项是线性扩散

项, 描述了表面平滑化的过程, 即趋向于减小表面

的曲率. 方程右边第 2项为非线性项, 它描述了表

面粗糙化的非线性增长. 非线性项使得表面的增长

速率取决于表面曲率的平方, 从而引入复杂的动力

学行为. 方程右边最后一项是随机噪声, 它表示外

部随机影响, 如热波动等对表面生长的随机扰动.

综上所述, VLDS 方程将线性平滑化效应、非线性

粗糙化效应和随机扰动结合在一起, 提供了一个描

述理想MBE生长的随机动力学生长方程 [6,7].

W (L, t)由于表面粗糙度  可以反映表面生长时

的动力学特性, 因此在表面生长动力学领域被广泛

使用, 其满足以下标度关系 [8]: 
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W (L, t) =

⟨
L∑

x=1

[h(x, t)− h(t)]2/L

⟩1/2

∼ Lαf(t/Lz), (2)

L α z

β = α/z

其中  表示生长系统的基底尺寸,   和  分别为粗

糙度和动力学指数, 而   为生长指数. 对于

高斯白噪声等非关联噪声驱动的 VLDS方程, 理

论解析和数值模拟取得的标度指数是一致的 [7]. 然

而很多场景的生长情况具有长程时间关联或空间

关联而无法被非关联噪声所描述. 比如在晶体生长

过程, 即使同一时刻, 在粒子的沉积和扩散过程中,

不同位置之间的粒子存在空间上的相互作用. 此

外, 在同一个位置, 不同时间的沉积粒子也存在时

间上的关联, 这就导致生长过程的粒子间在空间和

时间上均能呈现出长程关联的特性. 因此需要在局

域的 VLDS方程中引入长程时空关联噪声, 其关

联形式表现为 

⟨η(x, t), η(x′, t′)⟩ = 2D|x− x′|2ρ−1|t− t′|2θ−1, (3)

ρ θ其中  和  分别表示为空间和时间关联指数. 对于

含长程时空关联噪声的 VLDS方程, 目前依然难

以获得精确的解析值, 而不同的解析近似方法所得

的标度指数并不自洽 [9,10], 因此需要借助于数值模

拟等方法做进一步的证实和澄清. 需要指出的是,

对 VLDS方程进行数值模拟时, 由于非线性项的

存在会引起数值发散等问题, 从而导致模拟生长过

程的异常中止, 所以也难以得到可靠的标度指数.

考虑到不同的表面生长模型可能表现出相同的动

力学标度行为, 则这些生长模型可以被归类为同一

个普适类, 具有相同普适类的表面生长模型具有相

同的生长指数 [8]. 现有的数值模拟方法通常对属于

同一普适类的离散生长模型 [11] 进行数值模拟, 或

者采用指数衰减技术 [12] 替换方程中的非线性项,

从而达到抑制数值发散的目的. 但是, 最近的研究

表明指数衰减方法可能会影响标度指数, 从而影响

其普适类 [13]. 因此, 如何基于数值模拟方法来抑制

含长程时空关联噪声的 VLDS方程的数值发散并

获得可靠的标度指数将是亟待解决的问题.

近几年来, 深度神经网络在偏微分方程的数值

模拟中取得了广泛的应用. 例如, Raissi等 [14] 提出

物理信息神经网络 (physics-informed neural net-

work, PINN), 并基于数据驱动的范式训练神经网

络. 该范式被广泛用于非线性偏微分方程的数值模

h(x, t)

拟和其他物理量的计算 [15–17]. 深度神经网络还被

普遍用于计算流体动力学 [18] 领域, 用于加速Navier–

Stokes (N-S)方程的数值模拟 [19], 以及改善雷诺平

均 N-S方程模拟 [20,21], 以及粗分辨率大涡模拟 [22]

(coarsely-resolved large-eddy simulations)等领域.

神经网络虽然在常规偏微分方程的数值模拟上取

得了显著的进展, 但是针对随机偏微分方程的神经

网络数值模拟研究依然缺乏. 考虑到 VLDS方程

是典型的随机偏微分方程, 及其在表面生长动力学

中的理论意义, 本论文以 VLDS方程为例, 构建出

面向随机偏微分方程的数值模拟框架. 由于随机项

的存在, 无法直接采用 PINN等方法预测 VLDS

方程的表面高度  . 考虑到深度神经网络具有

表征复杂非线性偏微分方程的能力, 即便是对于

N-S等复杂的方程, 深度神经网络依然能够较为准

确捕捉其中的复杂流动特性, 有效表征 N-S方程

中的复杂非线性关系. 神经网络采用数据驱动的范

式, 通过端到端学习, 从输入直接得到输出, 中间

无需复杂的离散化过程. 因此, 通过构建神经网络

来对方程进行表征, 可以避免使用有限差分等传统

方法对非线性方程进行离散所导致的数值发散问

题, 使得能够对该方程进行数值模拟, 得以研究其

动力学标度行为. 此外, 神经网络训练和推理可以

利用图形处理器 (graphics processing unit, GPU)

等设备进行大规模并行计算, 大幅提高计算效率.

因此, 本文通过构建数值稳定的深度神经网络, 学

习 VLDS方程中的确定项 (右边前两项), 从而实

现长程关联噪声驱动的 VLDS方程的数值模拟并

探索其动力学标度行为. 

2   基于深度神经网络的 VLDS方程
数值模拟方法

 

2.1    方法框架

η(x, t)

不同于薛定谔方程、Burgers方程等常见偏微

分方程, 可以使用神经网络直接预测某一时刻某一

位置的具体数值. 考虑到 VLDS中噪声项  是

无法预测的,  因此本文基于深度神经网络提出

表征 VLDS方程确定性项的方法来数值模拟这一

类随机偏微分方程, 所提方法的整体框架如图 1

所示.

从图 1可见, 所提方法包含训练和生长两个阶

段. 在训练阶段, 网络旨在学习如何去表征方程的
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确定项 (方程右边前两项), 即学习如下的映射关

系 F: 

F (h(x, t)) = −ν∇4h(x, t) + λ∇2(∇h(x, t))2. (4)

神经网络具有强大的拟合能力,  通过构建满足

(4)式中映射关系的输入输出数据对, 网络即可在

数据的驱动下学习该关系. 训练数据的获取以及训

练细节详见 2.2节.

h(x, t) h(x, t+∆t)

网络训练完成之后, 进入生长阶段. 此阶段和

传统有限差分 (finite-difference, FD)方法类似, 进

行时间离散化并引入噪声. 通过当前离散时刻的

 , 获取下一离散时刻的数值   , 从

而实现对生长模型的模拟. 二者的差异在于, FD

方法需要对方程的确定项进行离散化, 从而导致发

散. 而本文的神经网络算法则采用训练完成的网络

表征确定项并引入噪声项, 即可进行表面生长的数

值模拟, 如 (5)式所示: 

h(x, t+∆t) = h(x, t) + [F (h(x, t)) + η(x, t)]∆t. (5)

由于此过程无需再进行确定项的离散化, 从而有效

避免了数值发散问题. 

2.2    实现方法

考虑到深度神经网络是数据驱动的, 为了有效

地训练神经网络, 首先需要获得足够的训练数据.

为此, 本文采用 FD方法对无关联噪声驱动的VLDS

方程进行离散化, 并保留数值发散之前的结果作为

训练数据. 具体而言, VLDS方程的有限差分格式

如下: 

h(x, t+∆t)

= − ν[h(x+ 2, t)− 4h(x+ 1, t) + 6h(x, t)

− 4h(x− 1, t) + h(x− 2, t)]∆t

+ λ/4{[h(x+ 2, t)− h(x, t)]2 − 2[h(x+ 1, t)

− h(x− 1, t)]2 + [h(x, t)− h(x− 2, t)]2}∆t

+ rη(x, t)∆t+ h(x, t), (6)

r

Ix,t Yx,t

Ix,t = h(x, t)

Yx,t = −ν∇4h(x, t)+

λ∇2(∇h(x, t))2

其中  为避免发散采取的噪声强度比例. 训练数

据为  (输入)-  (输出标签)数据对 , 其中网

络的输入为  ,  表示当前时刻的表面

高度,  网络的输出标签为  

 , 表示 VLDS方程确定项的输出结

果, 通过 (7)式获得
 

Yx,t = −ν∇4h(x, t) + λ∇2(∇h(x, t))2

= − ν[h(x+ 2, t)− 4h(x+ 1, t) + 6h(x, t)

− 4h(x− 1, t) + h(x− 2, t)]∆t

+ λ/4{[h(x+ 2, t)− h(x, t)]2 − 2[h(x+ 1, t)

− h(x− 1, t)]2 + [h(x, t)− h(x− 2, t)]2}∆t, (7)

x = 1, 2 · · · , L其中  .

F (Ix,t) Px,t

Px,t Yx,t

若将网络的实际预测结果  记为   ,

进而可以获得输出  和目标  之间的损失:
 

Lt =
∑
x

(Yx,t − Px,t)
2
+
∑
x

|Yx,t − Px,t|

+ k

[∑
x
(Yx,t+1 − Px,t+1)

2

+
∑

x
|Yx,t+1 − Px,t+1|

]
, (8)

L1 L2

L1 L2

k Yx,t+1 Px,t+1

其中方程右边前两项分别表示当前时刻的  和 

约束, 方程右边后两项表示下一时刻的  和  约

束,   为权重参数,   ,   分别表示下一时

刻的网络预测目标和网络输出, 其通过 (9)式获得:
 

Yx,t+1 = − ν[Yx+2,t − 4Yx+1,t + 6Yx,t

− 4Yx−1,t + Yx−2,t]

+ λ/4{[Yx+2,t − Yx,t]
2 − 2[Yx+1,t

− Yx−1,t]
2 + [Yx,t − Yx−2,t]

2}, (9a)
 

Px,t+1 = − ν[Px+2,t − 4Px+1,t + 6Px,t

− 4Px−1,t + Px−2,t]

+ λ/4{[Px+2,t − Px,t]
2 − 2[Px+1,t

− Px−1,t]
2 + [Px,t − Px−2,t]

2}. (9b)

 

输入 预测
计算
损失

深度神经网络

训练阶段

深度神经网络
输入 预测

生长阶段

-4(,)+
2((,))2

(,D)=
(,)+D
D

((,))(,)

(,) ((,))

((,))TD

(,)TD

(,)

图 1    基于深度神经网络的 VLDS方程数值模拟算法框图

Fig. 1. Framework  of  deep  neural  network-based  VLDS

simulation algorithm.
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Lt获取损失  之后, 本文采用反向传播算法 [23] 进行

网络参数的更新.

不同于 PINN等算法 , 我们所处理的 VLDS

方程神经网络不包含全连接层, 由 5个 1维卷积层

组成. 为了表达方便, 该网络简称为 VLDSNet. 需

要指出的是, 本文通过采用卷积层替换全连接层,

具有参数量少和计算量低的优势, 且无需重新训练

网络就可以直接处理不同尺寸的输入, 适合探索表

面生长过程的高度演化以及动力学标度行为. 本文

提出的 VLDSNet的具体结构见表 1.
 
 

表 1    VLDSNet网络结构

Table 1.    Network structure of the VLDSNet.

网络层 卷积核(通道、大小、填充) 尺寸(通道×尺寸)

输入 — 1 × L

卷积层1 (9, 5, 2) 9 × L

卷积层2 (16, 3, 1) 16 × L

卷积层3 (64, 1, 0) 64 × L

卷积层4 (9, 1, 0) 9 × L

卷积层5 (1, 3, 1) 1 × L

输出 — 1 × L
 

Ix,t Yx,t

ν = 1 λ = 48 L = 2048

∆x = 1 ∆t = 0.05 t = 5000

10−6

在 VLDSNet训练阶段, 本文设置每训练 4轮

(Epoch)采用 (7)式生成一次训练数据  和  ,

(7)式中参数分别设置为  ,   ,   ,

 ,    , 以及生长时间  . 训练

神经网络过程中的优化器采用 Adam[24], 初始学习

率为 0.01, 批大小 (batchsize)为 512. 每轮训练完

成后, 使用相同的参数进行测试并计算损失值, 若

测试轮次的损失值连续 35轮不降低, 则将学习率

减小为原来的 0.2倍, 当学习率小于  则结束训

练. 训练阶段的损失值如图 2 所示, 从该图中很容

易发现, 训练和测试数据的损失值随着训练逐渐收

敛, 且没有出现过拟合现象.
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图 2　VLDSNet训练阶段的损失值

Fig. 2. Loss values of VLDSNet at the training stage. 

3   实验与讨论
 

3.1    VLDSNet 在无关联噪声驱动的 VLDS
方程的模拟结果

105

为了验证 VLDSNet方法的有效性, 本文首先

在无关联噪声驱动的 VLDS方程中进行数值模拟.

具体而言, 本文采用训练完成的网络, 按照 (5)式

进行生长阶段的数值模拟. 我们选取系统尺寸为 L =

4096, 而总时间为 t =    . 所选取的无关联噪声

分别为分布区间为 [–0.5, 0.5]的均匀噪声和标准

高斯噪声 (均值为 0, 方差为 1), 系综平均次数均

为 500. VLDSNet方法所得的标度指数如图 3所
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图 3    VLDSNet在不同无关联噪声驱动的模拟结果　(a)均匀分布噪声; (b)高斯白噪声

Fig. 3. Simulation results of VLDSNet driven by uncorrelated noise: (a) Uniformly distributed noise; (b) Gaussian white noise.
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β = 0.33± 0.01

104—105

β = 1/3

示, 两种噪声所对应的估计值均为  ,

其中子图为生长时间  区间内不同时间

的斜率, 与重整化群 (dynamical renormalization

group, DRG)方法得到的结果   一致 [7]. 我

们的结果也表明, 无关联噪声的具体类型并不影响

表面生长系统的动力学标度行为.

已有研究表明, 有限差分方法在模拟无关联噪

声驱动的 VLDS方程中易出现数值发散的问题 [25],

而本文所提的 VLDSNet旨在解决该问题. 为了证

明本文所提出的算法的优势, 本文采用不同的时间

步长, 不同种类的无关联噪声 (分布区间为 [–0.5,

0.5]的均匀噪声和标准高斯白噪声)乘以不同的噪

声强度比例 (噪声强度比例为 0.1, 1, 10, 100倍),

然后记录每次模拟的发散时间, 并在表 2中展示了

平均发散时间. 从表 2可见, 本文所提的 VLDSNet

具有较好的数值稳定性,  即便是噪声幅度扩大

100倍, 在两种噪声和两种离散步长下都不会出现

数值发散, 显著优于有限差分算法. 

3.2    VLDSNet 在长程关联噪声驱动的
VLDS 方程中的模拟结果

∆t = 0.05

t = 105

θ

ρ

对于长程关联噪声驱动的 VLDS方程, 现有

理论解析近似所得的标度指数并不一致 [9,10]. 基于

有限差分方法的数值模拟需要通过指数衰减等方

式改变非线性项以避免数值发散的问题, 这可能导

致标度指数发生改变 [13]. 考虑到 VLDSNet具有较

好的数值计算稳定性, 本文使用 VLDSNet通过 (5)

式进行生长阶段的数值模拟. 具体而言, 此处采用

的系统尺寸为 L = 4096, 离散步长为   ,

而总生长步数达到  . 采用如 (3)式所示的不

同长程时间关联噪声 (时间关联指数为  )和不同

长程空间关联噪声 (空间关联指数为  ), 关联噪声

通过快速分数高斯噪声生成 (fast fractional Gaus-

sian noise generator, FFGN)方法 [26,27] 获得, 独立

模拟 500次并取平均, 所得的标度指数如图 4所

示.  从该图容易观察到 ,  VLDSNet所得结果和

标度分析 (scaling approach,  SA)[10] 与和自洽展
 

表 2    VLDSNet和有限差分方法数值发散比较
Table 2.    Comparison of numerical divergence between VLDSNet and FD.

噪声缩放比例 离散时间步长
FD

发散时间
(高斯噪声)

VLDSNet发散时间
(高斯噪声)

FD
发散时间
(均匀噪声)

VLDSNet发散时间
(均匀噪声)

0.1 0.05 未发散 未发散 未发散 未发散

1 0.05 17.4 未发散 1728.5 未发散

10 0.05 7.0 未发散 9.9 未发散

100 0.05 5.0 未发散 6.0 未发散

0.1 0.1 2284.4 未发散 未发散 未发散

1 0.1 8.6 未发散 31.9 未发散

10 0.1 6.0 未发散 7.0 未发散

100 0.1 5.0 未发散 5.0 未发散
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图 4    VLDSNet在长程关联噪声驱动的模拟结果　(a)长程时间关联噪声; (b)长程空间关联噪声

Fig. 4. Simulation results of VLDSNet driven by long-range correlated noises: (a) Long-range temporally correlated noise; (b) long-

range spatially correlated noise.
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开 (self-consistent expansion, SCE)技术 [9] 所得的

整体趋势是一致的, 生长指数随着噪声关联指数

的增加而增加. 需要强调的是, 本文所提的数值模

拟算法的核心是通过 VLDSNet表征方程的确定

项, 而 VLDSNet的训练数据基于 FD方法直接对

VLDS方程数值模拟在没出现发散之前获取的. 因

而本文算法对通过引入时间和空间关联噪声来描

述长程关联对 VLDS生长动力学的定量结果是可

靠的, 而且对含长程关联噪声的 VLDS方程在解

析近似分析提供了可靠的数值参考.

t = 105

为进一步分析长程时间和空间关联对生长动

力学的影响, 本文还展示了不同噪声关联指数时稳

态生长阶段 (  )时的表面形貌对比, 如图 5

所示. 我们发现, 随着噪声关联指数的增大, 表面

形貌发生了明显的改变, 尤其是对于时间关联噪声

驱动的 VLDS系统, 当时间关联指数超过了一定

的阈值, 更是出现了如图 5(c)所示的谷堆状形貌.

有趣的是, 长程时间关联噪声驱动的 VLDS方程

表面形貌的演化特点与含时间关联噪声 Kardar-

Parisi-Zhang (KPZ)方程 [11,13] 的结果是一致的 .

这种相似性也反映出长程时间关联对生长动力学

的表面形貌演化起到了至关重要的作用. 需要指出

的是, 随着空间生长指数的改变, 空间关联噪声驱

动的 VLDS生长形貌并没有出现明显的变化, 仍

然呈现出自仿射分形的结果. 

4   结　论

本文提出了基于深度神经网络的随机偏微分

方程数值模拟方法, 该方法采用深度神经网络表征

随机偏微分方程中的确定项, 通过神经网络自适应

地学习方程的离散化格式, 以避免有限差分方法的

数值发散问题. 虽然本文算法相比于传统的 FD方

法有更佳的数值稳定性, 但是从目前的情况来看,

神经网络的计算量较大. 但是如引言中所述, 神经

网络已用于加速 N-S等方程的数值模拟. 神经网

络具有较强的多尺度特征提取能力, 可以学习低分

辨率离散空间到高分辨离散空间的映射, 可以自适

应地调整时间步长, 使得计算更加高效. 如何借助

神经网络的这些优势, 加速表面生长动力学的模

 

-1

0

1

2

3

4





10240 2048 3072 4096



(f)

-2

-1

0

1





10240 2048 3072 4096



(d)

-45

-40

-35

-30

0 1024 2048 3072 4096



-50

-25





(b)

-2

-1

0

1

2





10240 2048 3072 4096



(e)

-250

-200

-300

-150





10240 2048 3072 4096



(c)

0 1024 2048 3072 4096



-10

-8

-6

-4





(a)

θ = 0.05 θ = 0.25 θ = 0.45 ρ =

0.05 ρ = 0.25 ρ = 0.45

图 5    长程时间和空间关联噪声驱动的VLDS系统在稳态生长阶段的表面形貌　(a)   ; (b)   ; (c)   ; (d)  

 ; (e)   ; (f)  
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Fig. 5. Surface morphologies of VLDS system driven by long range temporally and spatially correlated noises in the steady growth

regions: (a)   ; (b)   ; (c)   ; (d)   ; (e)   ; (f)   .
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拟, 是下一步有待研究的内容. 本文基于VLDS方程开

展实验, 分别在无关联噪声, 长程时间和空间关联噪

声驱动的 VLDS方程中, 验证了本文方法的有效

性、准确性和数值稳定型. 此外, 本文还发现随着长

程时空关联噪声中关联指数的增大, 系统的表面形貌

发生了显著的改变. 同时, 随着关联指数的增大, 系

统的生长指数也在逐渐增大, 且时间关联指数对生长

指数和表面形貌的影响要大于空间关联指数的影响.

这一结果和解析近似方法所得的趋势是一致的.

对于长程时间关联噪声驱动的 VLDS方程,

在时间关联指数较大时, 系统更是会形成谷堆状的

特殊表面形貌, 说明在这种情况下表面形貌的自仿

射分形结构发生了破坏. 上述现象同样存在于含时

间关联噪声的 KPZ生长系统, 这表明长程时间关

联噪声对于不同普适类的生长系统都有着相似的

影响, 且当时间关联指数较大时, 时间关联噪声可

能比生长规则本身发挥着更加重要的作用. 除此之

外, 我们也注意到, 对于不同关联噪声驱动的 VLDS

系统, 无论从对标度指数值的变化趋势, 还是从表

面形貌的演化特点来比较, 时间关联比空间关联在

相同的条件下对 VLDS生长表现出较强的影响特

点, 这种非平庸的动力学行为所蕴含的深层次物理

机制还需要进一步的探讨.
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Abstract

The Villain-Lai-Das Sarma (VLDS) equation has received much attention in surface growth dynamics due

to its effective description of molecular beam epitaxy (MBE) growth process. However, the scaling exponent of

the  VLDS  equation  driven  by  long-range  correlated  noise  is  still  unclear,  because  different  analytical

approximation  methods  yield  inconsistent  results.  The  nonlinear  term  in  the  VLDS  equation  challenges  the
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numerical  simulation  methods,  which  often  leads  to  the  problem  of  numerical  divergence.  In  the  existing
numerical approaches, the exponential decay techniques are mainly used to replace nonlinear terms to alleviate
the  numerical  divergence.  However,  recent  studies  have  shown  that  these  methods  may  change  the  scaling
exponent and universality class of the growth system. Therefore, we propose a novel deep neural network-based
method  to  address  this  problem  in  this  work.  First,  we  construct  a  fully  convolutional  neural  network  to
characterize the deterministic terms in the VLDS equation. To train the neural network, we generate training
data  by using  the  traditional  finite-difference  method before  numerical  divergence  occurs.  Then,  we  train  the
neural  network  to  represent  the  deterministic  terms,  and  perform simulations  of  VLDS driven  by  long-range
temporally  and  spatially  correlated  noises  based  on  the  neural  networks.  The  simulation  results  demonstrate
that the deep neural networks constructed here possess good numerical stability. It can obtain reliable scaling
exponents  of  the VLDS equation driven by different  uncorrelated noise  and correlated noise.  Furthermore,  in
this work, it is also found that the VLDS system driven by long-range correlated noise exhibits a mound-like
morphology  when  the  temporal  correlation  exponent  is  large  enough,  while  the  growing  surface  morphology
driven  by  spatially  correlated  noise  still  presents  a  self-affine  fractal  structure,  independent  of  the  spatial
correlation exponent.

Keywords: neural network, molecular beam epitaxy growth, Villain-Lai-Das Sarma equation, dynamic scaling
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