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Fig. 1. Two-body correlation function of the Laughlin state:
(a) A representative of the anisotropic Laughlin state;
(b) the isotropic Laughlin wave function. The areas of the

two correlation holes are the same. From Ref. [4].
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Fig. 2. Illustration of graviton-like excitation and its chirality
in the 1/3 Laughlin state using Wen’s!! dancing pattern
analogy. Left panel: In the Laughlin ground state (or dan-
cing pattern), the minimum relative angular momentum of
a pair of dancers is 3, ensuring sufficient separation between
them. Right panel: A graviton-like excitation corresponds to
a pair whose relative angular momentum changes from 3 to
1 (antisymmetry of fermion wave function only allows for
odd relative angular momenta). This is not allowed in the
Laughlin state, as a result, it corresponds to an excitation
which is the “graviton” detected by Liang et al.'?. In other
words, the Raman process creates a “graviton” by turning a
pair with relative angular momentum 3 (left panel) to a
pair with relative angular momentum 1 (right panel). The
angular momentum of this excitation is 1 — 3 = -2, corres-
ponding to graviton chirality —2. For hole states like
2/3 and 3/5, because the chirality is reversed for holes,
graviton chirality becomes +2. From Ref. [13].
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Fig. 3. Circularly polarized Raman scattering. Different
combinations of incident and outgoing light polarization
couple to elementary excitations of different angular mo-
mentums in the system. In the 1/3 filled Laughlin state,
only the combination corresponding to the angular mo-
mentum —2 has a resonance peak (see the green curve
on the right), which is consistent with the prediction of
Ref. [10]. Cited from Ref. [12].
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Abstract

The application of topology in condensed matter physics began with the study of the quantum Hall effect

and has gradually become the main theme of modern condensed matter physics. Its importance lies in capturing

the universal properties of physical systems. In particular, fractional quantum Hall liquids are the most strongly

correlated systems and exhibit topological order. Its most important and universal feature is the quasiparticle

(quasi-hole) elementary excitations with fractional charge and statistics, which are captured by topological field

theories. However, such a macroscopic description of fractional quantum Hall liquids is not complete, because it

misses an important geometric aspect that is important for both universal and non-universal properties of the
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system. In particular, the nature of its electrically neutral elementary excitations has not been fully understood
until recently. Finite-wavelength electrically neutral elementary excitations can be viewed as charge density
waves or bound states of quasi-particles-quasi-holes. However, such pictures are not applicable in the long-wave
limit, so a new theoretical framework is needed. In this theoretical framework, one of the most basic degrees of
freedom is the metric tensor that describes the electron correlation. Figuratively speaking, it describes the
geometric shape of the correlation hole around the electron. Therefore, this theory is called the geometric theory
of the fractional quantum Hall effect. Since the metric tensor is also the basic degree of freedom of the theory of
gravity, this theoretical framework can be regarded as a certain type of quantum theory of gravity. Its basic
elementary excitation is a spin-two graviton. This perspective discusses the geometric degrees of freedom and its
quantum dynamics in quantum Hall liquids from a microscopic perspective, revealing that its basic elementary
excitations are spin-two graviton-like particles with specific chirality, and focuses on the experimental detection
of this chiral graviton-like particle.

The figure illustrates graviton-like excitation and its chirality in the 1/3 Laughlin state using Xiao-Gang
Wen'’s dancing pattern analogy [Wen X G 2004 Quantum Field Theory of Many-body Systems: From the Origin
of Sound to An Origin of Light and Electrons (Oxford: Oxford University Press)], with left panel showing
that in the Laughlin ground state (or dancing pattern), the minimum relative angular momentum of a pair of
dancers is three, ensuring sufficient separation between them, and with right panel displaying that a graviton-
like excitation corresponding to a pair whose relative angular momentum changes from three to one
(antisymmetry of fermion wave function only allows for odd relative angular momenta). This is not allowed
in the Laughlin state, as a result, it corresponds to an excitation which is the “graviton” detected by Liang et
al. [Liang J H, Liu Z Y, Yang Z H, et al. 2024 Nature
628 78]. In other words, the Raman process creates a ”’f
“graviton” by turning a pair with relative angular
momentum three (left panel) into a pair with relative
angular momentum one (right panel). The angular
momentum of this excitation is 1—3 = —2, corres-
ponding to a graviton with chirality —2. For hole states
like 2/3, because the chirality is reversed for holes,
graviton chirality becomes +2. This figure is adopted
from Yang [Yang K 2024 The Innovation 5 100641].
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