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Fig. 1. Steps for discovering high magnetic moment Janus

materials by combining machine learning with density fun-
ctional theory (DFT).
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Fig. 2. (a) Side view and (b) top view of atomic structures

of hexagonal ABC-type Janus materials.
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Fig. 3. The distribution of (a) lattice constants a and b, (b) lattice constant ¢, (c¢) formation energy and (d) total magnetic moment

of the dataset of 2D Janus materials.
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R 1 AU Pl R 24

Table 1.  The hyperparameters of the optimal machine learning models in various training tasks.

st HEH
GBDT (REH4325) learning_rate = 0.01603011, max_ depth = 5, n_ estimators = 272, subsample = 0.69895067
GBDT(EHLHE) learning _rate = 0.02, max_ depth = 6, n_ estimators = 353, subsample = 0.93030056

ET (%5 £ afib)

XGB(fs %)

max_depth = 10, max_features = 0.60, n_ estimators = 100,
min_samples leaf = 2, min samples split = 4
learning rate = 0.02, n_ estimators = 300, max_depth = 5,
subsample = 0.8, colsample bytree = 0.49613519
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Table 2.  Prediction of lattice constants.

Lattice a = b

MAE RMSE R2 MAE RMSE R2?

RF  0.5485 0.8104 0.7375 0.6491 1.0001 0.6872
GBDT 0.4477 0.7350 0.7829 0.6679 0.9924 0.6923
XCGB  0.5427 0.7968 0.7462 0.5953 0.9474 0.7186
ET  0.3469 0.6808 0.8137 0.6534 1.0103 0.6817
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Fig. 4. Prediction of lattice constants: scatter plots for the optimal models in ten-fold cross-validation: (a) The optimal model for
the lattice a = b prediction task: ET; (b) the optimal model for the lattice ¢ prediction task: XGB.
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Table 3.

ation metrics of four machine learning models.

The prediction of formation energy: Evalu-

A MAE RMSE R?

RF 0.1054 0.1697 0.8671
GBDT 0.0798 0.1411 0.9070
XGB 0.0959 0.1533 0.8930

ET 0.1120 0.1701 0.8657

PR RS R, GBDT BB ik
S, BHA AR R MAE F1 RMSE, LA M fi &5 i R?2

P4y, H MAE 4 0.0798, RMSE ¥ 0.1411, H R?
PEA3AE T 0.9070. /45 XGB 7 MAE, RMSE, R?
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U235 L () A
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17 7 T4z gk, F71 H % F- 3 (macro-aver-
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HAE A7 28 SIS UE L 2 v & AR A FE I AR | i)
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Fig. 5. Prediction of formation energy: Scatter plots for four models in ten-fold cross-validation: (a) RF; (b) GBDT; (c) XGB; (d) ET.
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FRAY.

4 BRI WAMLE S TR T bR
Table 4.

tion: Evaluation metrics of four machine learning

Prediction of magnetic moment classifica-

models.
FEETRY Accuracy  Precision  Recall F1 score
RF 0.8770 0.8459 0.7636 0.7862
GBDT 0.8948 0.8498 0.8182 0.8263
XGB 0.8762 0.8398 0.7697 0.7883
ET 0.8795 0.8392 0.7778 0.7965
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Fig. 7. Side view of atomic structures of 13 two-dimensional hexagonal Janus materials.

#5  13FEEMAALIE RIS A S R ABC B
Janus BEHR) S FEL Y BURE FIREHE 4 éélf —L/%
Table 5.  Optimized lattice constants, formation

energies, and magnetic moments of 13 two-dimen-

AT THROCR AR, W T

sional hexagonal ABC-type Janus materials.

o Lattice constants Fommation Wl n 22 TR R ME R FE MR RRE, B2 R AE A AT
O WA /A emergy/eV A B C e, AR T 198 FRHFHERAF. £ XSS ABC
ErFeTh 335 1825 202 251 3.03 6.24 HI Janus bHEH SRS B8 TE R RE IR AN 26, %
FeNO 292 1500 1187  1.17 0.08 0.47 [ _

2 FEL A Sy
HoRuSr  4.90 18.79 ~6.66 3.79 0.02 0.05 DU L s~ ) S (RF’ GBDT, XGB, ET) R
DyOsSr 418 1887 689 489 0 0.13 T DU S E AL P 38 U IE 7 e b A7)l
EuShSr 543 1869 553  6.85 0.01 0.05 Y, IEARE T A4 A5 Th R DL BRI (5%
HolrSr 458 1879 724 372 0 0.05 sk 1 e, Ak eban.
LiUZn 289 1813  —0.44 0 1.65 0.01 A o = b: ET; f&HE ¢ XGB; JEHifE: GBDT
PuSZn 452 1813 675  5.61 0.10 0.01 RG2S GBDT). ilad W a e i 7S ff i R 4
GdKU 746 1813  -239 733 0 296 WA T EE R, 2T 82018 Fi o % BRI 75 £
LuNbTi 302 1813  -1.76  0.02 0.28 1.67 o s -

I} 4 B 2
GdHfSe 503 1893 846  7.33 0.34 0.02 AR ABC B Janus A1RF B R YIZREIBLE -
NaTbZn  4.65 1869 187  0.02 6.00 0 SJRERL e T 4024 FhESHESE H B S REAE
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Abstract

Discovering compact, stable, and easily controllable nanoscale non-trivial topological magnetic structures,
such as magnetic skyrmions, is the key to developing next-generation high-density, high-speed, and low-energy
non-volatile information storage devices. Based on the topological generation mechanism, magnetic skyrmions
can be generated through the Dzyaloshinskii-Moriya interaction (DMI) caused by breaking space-reversal
symmetry. Two-dimensional (2D) non-centrosymmetric Janus structurecan generate vertical built-in electric
fields to break spatial inversion symmetry. Therefore, seeking for 2D Janus material with intrinsic magnetism is
fundamental to develop the novel chiral magnetic storage technologies. In this work, we combine detailed
machine learning techniques and first-principle calculations to investigate the magnetism of the unexplored 2D
Janus material. We first collect 1179 2D hexagonal ABC-type Janus materials based on the Materials Project
database, and use elemental composition as feature descriptors to construct four machine learning models:
random forest (RF), gradient boosting decision trees (GBDT), extreme gradient boosting (XGB), and extra
trees (ET). These algorithms and models are constructed to predict lattice constants, formation energy, and
magnetic moment, via hyperparameter optimization and ten-fold cross-validation. The GBDT exhibits the
highest accuracy and best prediction performance for magnetic moment classification. Subsequently, the
collected data of 82018 yet-undiscovered 2D Janus materials, are input into the trained models to generate 4024
high magnetic moment 2D Janus materials with thermal stability. First-principles calculations are employed to
validate random sample of 13 Janus materials with high magnetic moment. This study provides an effective
machine learning framework for classifying the magnetic moments and screening highthroughput 2D Janus
structures, thereby accelerating the exploration of their magnetic properties. The datasets provided in this work
are available from https://doi.org/10.57760/sciencedb.j00213.00072.

Keywords: machine learning, two-dimensional Janus materials, magnetic moment, first-principles calculations
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