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寻找尺寸小、稳定性高和易操控的纳米磁结构——磁斯格明子 (magnetic skyrmion), 是发展下一代高密

度、高速度和低能耗非易失性信息存储器件核心存储单元的关键. 磁性斯格明子根据其拓扑产生机制, 可以

由非中心对称结构诱导的 DMI (Dzyaloshinskii–Moriya interaction)作用项产生. 二维 Janus结构具有两个不

同面的原子层, 可以形成垂直内建电场, 打破中心空间反演对称性. 因此寻找具有本征磁性的二维 Janus材

料是研究新型磁存储的基础. 本文基于晶体材料数据库Materials Project中的 1179种六角晶系 ABC型 Janus

材料数据, 以其元素组分信息为特征描述符, 构建了随机森林、梯度提升决策树、极端梯度提升和极端随机

树等四种机器学习模型, 基于上述模型对晶格常数、形成能和磁矩分类进行了预测, 并采用十折交叉验证法

对模型进行了评估. 梯度提升决策树在磁矩分类预测显示出最高的精度和泛化能力. 最后, 基于上述模型对

尚未发现的 82018种二维 Janus材料进行了预测, 筛选得到 4024种具有热稳定性的高磁矩结构, 并基于第一

性原理的方法对其中随机抽样的 13种高磁矩结构进行了计算验证. 本研究为二维 Janus材料磁矩分类和高

通量筛选训练了有效的机器学习模型,  加速了二维 Janus结构磁性的探索 .  本文数据集可在 https://

doi.org/10.57760/sciencedb.j00213.00072中访问获取.
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1   引　言

自 2004年以来, 超薄的二维 (2D)材料石墨

烯 [1]、过渡金属硫化物 (TMDs)[2]、过渡金属碳化物/

氮化物 (MXenes)[3] 及二维金属卤化物钙钛矿 [4] 的

先后发现 [5], 为谷电子学、自旋电子学以及铁电 [6–8]

等新奇物理特性的研究提供了广泛的平台, 并在光

电、传感、非易失性铁电和铁磁存储领域引起了巨

大的关注. 其中铁电和铁磁耦合而成的多铁材料的

设计是实现下一代新型逻辑存储的重要途经之一,

其存储原理为: 在 2D材料中发现的具有本征受拓
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扑保护的磁斯格明子, 磁斯格明子通过铁电极化的

翻转来调控其类型, 从而实现逻辑态的存储. 而本

征磁斯格明子通常是由中心反演对称性破缺的结

构诱导的 DMI  (Dzyaloshinskii–Moriya  interac-

tion)项产生的, 因此中心反演对称性破缺的体系

是探索磁斯格明子的前提条件 [9]. 二维 Janus结构

的上下两面为不同元素组成的原子层, 上下两层原

子电负度的差异使其在垂直方向具有大的内建电

场, 打破空间反演对称性, 在物理和化学性质上呈

现出不对称性. 几个到十几个原子层厚度的二维

Janus材料具有显著的量子限域效应, 作为一种典

型的量子效应, 其与材料的组成、结构、化学键和

电子结构等因素紧密相关 [10–13], 二维 Janus材料

因其独特的结构在压电传感器、催化剂 [14]、生物医

学领域和能源存储等领域显示了广泛的应用前

景 [15,16]. 特别是具有大的磁晶各向异性、高磁矩和

本征磁拓扑的磁性 Janus体系, 是发展新一代赛道

级磁存储的重要候选者 [2,6,17–20].

传统的实验试错方法在新材料探索中昂贵且

耗时, 而基于第一性原理计算的高通量筛选虽降低

了实验和研发的周期及成本, 但对于复杂结构的大

体系则面临算力大、时间成本高等一系列瓶颈 [21,22].

近年来, 随着机器学习 (ML)在凝聚态物理及微电

子研究中的兴起 [23,24], 研究人员能够通过模型快速

从海量未知体系中筛选出满足所需物理性质的体

系, 显著减少了周期及成本, 随后, 通过第一性原

理计算进行理论研究, 验证模型预测的准确性. 机

器学习与第一性原理计算的结合 [25–27], 大幅提升

了材料研究的速度和精确度, 推动了新材料的快速

发现和开发.

当前, 国内外科研工作者已经采用机器学习和

第一性原理计算方法对 Janus材料及其异质结的

物理和化学性质开展了研究. Huang等 [28] 利用机

器学习结合密度泛函理论方法研究了 Janus材料

活性点位的局部偶极矩对单原子催化剂催化活性

的显著影响, 发现活性点位的局部偶极矩是调节催

化活性的关键因素, 为设计高性能催化剂提供了新策

略. Chaney等 [29] 利用密度泛函理论和机器学习方

法研究了 Janus异质结 Mo/WXY (X, Y = S, Se,

Te)表面锂的吸附和扩散, 探讨了二维 Janus过渡

金属硫化物的结构不对称性对电子性质的影响, 并

对比了 Janus与常规 TMDs结构的差异, 从而为

锂的吸附和扩散机制提供了机理解释 . Yan等 [30]

通过替换不同过渡金属的二维铁磁 Janus MXenes

材料, 显示其基态铁磁源与磁性原子 d轨道电子的

直接交换, 并基于机器学习的方法筛选出铁磁性的

材料, 为自旋电子器件开发提供了新策略. 尽管上

述研究中, 基于机器学习的方法对 Janus材料性质

的挖掘取得了重要进展, 但对于六角晶系 Janus结

构的磁预测仍有待探索. 此外, 如何通过特征工程及

超参数优化进一步提高模型的准确性也面临着挑

战. 因此, 研究和发展基于六角晶系 Janus体系的高

效且准确的磁预测模型为二维铁磁家族的扩展提

供了平台, 并将为凝聚态物理及微电子等领域带来

新的突破, 对自旋电子器件的发展具有重要意义.

本文基于材料的元素组分信息, 训练了四种针

对六角晶系 ABC型 Janus结构的机器学习模型.

用于预测 Janus材料的晶格常数、形成能和磁矩分

类. 通过模型的高通量筛选, 发现了 4024种未被

探索的高磁矩六角晶系 Janus材料. 最后, 基于第

一性原理的计算, 进一步验证了模型筛选的可靠

性, 为未来实验上制备上述高磁矩的 Janus材料提

供了理论依据. 工作流程如图 1所示.
 
 

数据集: 二维六角晶系Janus

特征: 元素组分信息描述符
目标属性: 晶格常数、形成能和磁矩分类

训练集 测试集

模型训练 模型评估

RF, ET, GBDT和
XGB算法超参数

优化十折交叉验证

DFT

计算验证

模型预测

元素替换生成的
ABC型Janus材料

筛选高磁矩
材料

图 1　机器学习结合基于密度泛函理论 (DFT)发掘高磁

矩 Janus材料步骤

Fig. 1. Steps  for  discovering  high  magnetic  moment  Janus

materials by combining machine learning with density fun-

ctional theory (DFT).
  

2   数据及研究方法
 

2.1    数据获取、分析及预处理

本文从 Materials  Project数据库 [31] 中提取

1179种二维六角晶系 ABC型 Janus材料作为数

据集, 图 2(a)和图 2(b)分别为二维六角晶系 Janus

材料原子结构的侧视和俯视图. 中间层紫色原子
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是 B原子, 上下两层分别为半径大小不同的绿色

A和黄色 C原子层. 由于 A和 C原子的电负度不

同, 因此沿 c 轴方向会产生内置电场, 打破空间反

演对称性. 该数据集包含材料的化学成分信息 (元

素、化学配比)、晶体空间群、晶格常数、形成能和

总磁矩等.
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图 2　六角晶系 ABC型 Janus材料原子结构的 (a)侧视图

和 (b)俯视图

Fig. 2. (a) Side view and (b) top view of atomic structures

of hexagonal ABC-type Janus materials.
 

图 3展示了数据集中二维 Janus结构数量随

晶格常数、形成能及总磁矩变化的分布情况. 图 3(a)

显示, 数据集中 Janus结构的晶格常数 a, b 的分布

主要在 4 Å和 8 Å附近, 具有两个显著峰值, 表明

数据集中面内晶格较为集中. 图 3(b)显示晶格常

0.25µB

数 c 主要分布在 3—10 Å的范围内, 在 3—7 Å处

具有显著峰值, 而少数二维 Janus结构的 c 值大

于 10 Å, 这可能是模型中考虑了真空层的厚度所

导致 [32]. 图 3(c)显示大部分 Janus结构的形成能

低于 0 eV, 表明上述结构是热稳定的, 仅小部分是

不稳定的. 图 3(d)显示大部分材料的总磁矩主要

集中在 0—  的狭窄区间, 只有少数具有较高

的磁矩.  上述特征表明 ,  数据集中的大部分

Janus结构是热稳定的, 且具有较低的磁矩. 以上

数据集中目标属性的特征对于机器学习算法的选

择、超参数调试具有重要作用.

对数据集进行初步分析后, 接下来执行数据预

处理步骤. 首先, 在六角晶系 ABC型 Janus材料

中, 晶格常数 a (Lattice a)和 b (Lattice b)的数值

始终一致, 因此在模型训练中, 将晶格常数 a 和 b 合

并为一个变量 (Lattice a=b), 以简化预测任务. 此

外, 模型训练仅考虑晶格常数 a 和 b 小于 10 Å的

样本, 通过排除这些样本来减少噪声, 防止异常值

对模型训练的干扰, 从而提高模型性能. 对于晶格

常数 c (Lattice c), 也采取了相同的操作.

0µB 0.25µB 0.25µB 3.5µB

其次, 添加磁分类标签, 将目标属性总磁矩分为

低磁矩 (  —  )、中磁矩 (  —  )、
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图 3    数据集中二维 Janus 材料的 (a)晶格常数 a 和 b, (b)晶格常数 c, (c)形成能和 (d)总磁矩的分布

Fig. 3. The distribution of (a) lattice constants a and b, (b) lattice constant c, (c) formation energy and (d) total magnetic moment

of the dataset of 2D Janus materials.
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3.5µB高磁矩材料 (>  ), 标签分类为 0/1/2, 每一类

材料的数量分别为 899, 214及 66个. 通过将磁矩

分为三个组别, 可以更好地捕捉不同磁矩类别之间

的差异, 为进一步的材料发现和研究提供更详细的

信息和指导.

本研究中, 模型训练的数据集按照 9∶1的比

例, 划分为训练集和测试集. 选择 90%的数据作为

训练集能够为模型提供充足的样本量进行学习, 确

保模型充分捕捉数据中的模式和特征, 从而提高其

拟合能力和预测性能. 此外, 为了在分类学习中保

持训练集和测试集中各类别样本比例平衡, 采用分

层抽样策略. 在模型训练过程中, 使用 SMOTEE-

NN (SMOTE and  edited  nearest  neighbours)采

样步骤 [33]. SMOTEENN结合了 SMOTE的过采

样和 ENN的欠采样, 这种方法首先对数据集应用

SMOTE技术, 对少数类样本进行过采样, 生成新

的少数类样本,  然后对过采样后的数据集应用

ENN技术, 通过删除噪声和边界样本进行欠采样.

本研究提供一种综合方法来同时处理少数类样本

不足和噪声样本问题. 这种方法提高了数据的质量

和代表性, 使得模型能够更准确地学习和预测, 从

而在实际应用中表现出更好的性能. 

2.2    特征生成及改进

Matminer

ElementFraction

本文采用  
[34] 的元素数据和化学计量

组成特征器—  , 生成了 22组仅含

材料组成信息的元素属性统计描述符 (magpie).

每组元素属性统计描述符包括:  最小值 (min)、

最大值 (max)、范围 (range)、平均值 (mean)、平均

偏差 (ave_dev)、众数 (mode), 共计得到了包含元

素组分信息的 132个描述符.

3× 3

3× 3

对每种 Janus结构构建一个   大小的矩

阵, 将 magpie统计的 22个元素属性分别以主对

角线为元素本身的属性值, 非主对角线则是原子 i

和 j 之间元素性质之和 (如基态磁矩和与轨道电子

数有关的属性)或其比值 (其余属性)的形式构建

材料的二维元素属性矩阵特征, 得到 22组  型

元素属性矩阵描述符 [35]. 随后, 将每组元素属性矩

阵按行展平并拼接, 最终获得 198种特征描述符.

通过将特征数量从 132个提高到 198个, 不仅

丰富了材料的描述信息, 还引入了元素间相互作用

的特征, 从而提高了模型的学习能力和预测准确

性. 这样的方法能够更全面地捕捉材料的复杂性

质, 提高模型在实际应用中的表现. 补充材料图 S1

(online), 表明了各模型在训练过程中比较重要的

特征. 

2.3    机器学习模型、训练及超参数优化

本研究采用了四种机器学习算法: 基于 Sklearn

库 [36] 的随机森林 (random forest, RF)、梯度提升

决策树 (gradient boosting decision tree, GBDT)、

极端随机树 (extremely  randomized  trees,  ET),

以及基于专用的 XGBoost库 [37] 的极端梯度提升

算法 XGBoost, XGB). XGB是一种高效的梯度提

升算法, 具有分块训练、自动处理缺失值、正则化

防止过拟合等优化功能. 此外, 上述四种算法能有

效处理高维度和复杂特征交互的数据, 具有快速计

算和高精度预测的优势. 对于回归任务, 上述四种

算法使用均方误差 (mean squared error, MSE)作

为损失函数, 并通过拟合优度 (R2)、平均绝对误差

(mean absolute error, MAE)和均方根误差 (root

mean squared error, RMSE)来评估其性能. 对于

分 类 任 务,  RF和 ET使 用 基 尼 不 纯 度 (Gini

impurity)作为评估准则, 而 GBDT和 XGB则采

用对数损失 (log-loss)函数作为评估准则. 分类任

务的性能评估指标包括准确率 (accuracy)、精确率

(precision)、召回率 (recall)和 F1分数 (F1 score).

上述评价指标的引入, 能够系统地比较和分析不同

算法在分类和回归任务中的表现, 为模型选择提供

了科学依据.

n_estimators max_depth
max_features

min_samples_leaf
min_samples_split

subsample

在机器学习的分类与回归任务中, 虽然 RF,

GBDT, XGB和 ET使用的基本算法结构和超参

数类型相同, 但这些超参数的调整重点因任务性质

的不同而有所区别. 分类任务侧重于提高算法的泛

化能力和准确预测类别, 而回归任务则强调预测值

的精确度和误差的控制. 对于上述四种算法, 树的

数量 (  )、最大深度 (  )以及

最大特征数 (  )是共通的关键参数, 影

响模型的学习能力和复杂性.  在分类任务中 ,

RF算法与 ET算法的叶节点上所需的最小样本数

(  )及内部节点再划分所需的最小

样本数 (  )是特别重要的; 而对于

GBDT和 XGB, 样本子集比例 (  )和最小

化损失的增益 (g)的作用亦如此, 这些参数降低模

型对训练数据的噪声敏感性, 减少模型的深度, 提
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max_features

colsample_bytree learning_rate

高对数据变化的适应能力, 防止过拟合、欠拟合及

提升泛化能力. 另一方面, 对于回归任务, RF和 ET

算法所需的最大特征数 (  )及 XGB

与 GBDT算法所需的每棵树所采样的特征比例

(  )和学习率 (  )是特别

重要的, 这些超参数的精确调整可以帮助模型找到

更好的局部最优解, 加速模型训练, 减少对训练数

据的依赖, 从而降低过拟合的可能性. 因此, 虽然

共通参数为模型提供了基础结构, 但是特定任务相

关的参数调整是优化性能、提高精确度和防止过拟

合的关键.

本研究采用贝叶斯超参数搜索技术 [38], 在超

参数优化过程中, 每次迭代都基于贝叶斯统计预测

各参数组合的潜在性能, 优先评估那些最有可能提

升模型表现的参数组合. 这种策略通过持续更新概

率模型, 并根据获得的性能数据优化搜索策略, 有

效地识别出最佳参数配置. 通过在十折交叉验证中

综合评估各参数组合的表现, 在最终迭代中选出表

现最优的超参数配置, 显著提升了模型的预测精度

和泛化能力. 不同学习任务中最优算法模型的超参

数见表 1. 

2.4    第一性原理计算

× ×

1× 10−6

本文采用基于DFT的第一性原理计算方法 [39,40],

通过维也纳从头计算模拟包 (Vienna ab initio sim-

ulation package, VASP)进行结构优化和静态计

算.  电子交换关联能由 Perdu-Burke-Ernzerhof

(PBE)泛函描述. 布里渊区中采用 5   5  5 k 点

网格进行优化和自洽,  平面波截断能量设置为

500 eV.  每个原子上所受力的收敛阈值设置为

–0.1 eV/Å, 能量收敛标准为    eV. 为了描

述局域化电子之间的库仑排斥力, 对含有 d, f轨道

电子的强关联体系设置了有效场库仑相互作用参

数 Hubbard U. 所有的计算中, 原子的初始磁矩设

置为零, 通过原子尺度的结构优化和静态计算, 提

取二维 Janus结构中的原子磁矩并与模型预测结

果对比, 验证模型预测可靠性. 

3   结果与讨论
 

3.1    晶格常数

本研究对晶格常数的模型训练分为两类: 一类

是针对晶格常数 a 和 b 的训练, 另一类是针对晶格

常数 c 的训练. 为了全面评估这两个部分的模型性

能, 使用十折交叉验证评估模型. 此方法不仅能够

评估模型的稳定性, 还能有效防止过拟合. 表 2展

示了四种模型分别对上述两类任务在测试集上的

平均评估指标.
 
 

表 2    晶格常数预测

Table 2.    Prediction of lattice constants.

模型
Lattice a = b Lattice c

MAE RMSE R2 MAE RMSE R2

RF 0.5485 0.8104 0.7375 0.6491 1.0001 0.6872

GBDT 0.4477 0.7350 0.7829 0.6679 0.9924 0.6923

XGB 0.5427 0.7968 0.7462 0.5953 0.9474 0.7186

ET 0.3469 0.6808 0.8137 0.6534 1.0103 0.6817
 

对于晶格常数 a 和 b 的预测, ET模型表现最

佳,  其 MAE为 0.3469, RMSE为 0.6808及 R2 评

分达到了 0.8137. 这表明 ET模型在完成训练晶格

常数 a 和 b 的任务时具有较高的准确性和稳定

性. 在晶格常数 c 的预测中, XGB模型表现最佳,

其MAE为 0.5953, RMSE为 0.9474及 R2 评分为

0.7186. 图 4(a)和图 4(b)分别展示了最优模型

ET和 XGB在晶格常数 a, b 和 c 的预测任务里,

在十折交叉验证过程中样本集上所有真实值与预

测值拟合程度的散点图.

从上述数据可以看出, 晶格常数 c 预测的性能

评估低于晶格常数 a 和 b. 这主要是由于Materials

Project数据库中晶格常数 c 的标准不一致, 并未

 

表 1    不同训练任务中机器学习最优模型的超参数
Table 1.    The hyperparameters of the optimal machine learning models in various training tasks.

模型 超参数

GBDT(磁矩分类) learning_rate = 0.01603011, max_depth = 5, n_estimators = 272, subsample = 0.69895067

GBDT(形成能) learning_rate = 0.02, max_depth = 6, n_estimators = 353, subsample = 0.93030056

ET(晶格常数a和b)
max_depth = 10, max_features = 0.60, n_estimators = 100,

min_samples_leaf = 2, min_samples_split = 4

XGB(晶格常数c)
learning_rate = 0.02, n_estimators = 300, max_depth = 5,

subsample = 0.8, colsample_bytree = 0.49613519
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阐明是否包含真空层厚度. 如果考虑了真空层厚

度, 其晶格会比体相的实际晶格 c 大很多, 而往往

在具有大的晶格常数 c 的 Janus体系中, 真空层可

能被包含在其中. 这就导致数据集中的晶格 c 比实

际晶格要大得多. 特别是在高晶格常数 c 的材料

中, 大多增加了真空层, 导致 c 值显著偏大. 这种

处理方式增加了数据分布的极端性和复杂性, 使得

数据的统计特性存在显著差异和额外的变异性, 进

一步加剧了数据的复杂性, 从而增加了模型的学习

难度, 导致晶格常数 c 的预测效果略低于晶格常

数 a 和 b. 

3.2    形成能

R2

本文分别采用了 RF, GBDT, XGB和 ET四

种算法训练二维 Janus材料形成能的预测模型, 并

对模型性能进行了评估. 表 3展示了十折交叉验证

过程中各模型在测试集上的平均评估指标 MAE,

RMSE及   . 图 5(a)—(d)展示了各模型在十折

交叉验证过程中样本集上所有真实值与预测值拟

合程度的散点图.

评价指标结果表明, GBDT模型表现最为优

异, 具有最低的 MAE和 RMSE, 以及最高的 R2

评分, 其 MAE为 0.0798, RMSE为 0.1411, 且 R2

评分达到了 0.9070. 尽管XGB在MAE, RMSE, R2

指标上也表现良好, 但总体上仍稍逊于 GBDT. 散

点图直观地展示了 GBDT模型在十折交叉验证过

程中样本集上所有真实值与预测值之间良好的拟

合程度, 大多数样本点都分布在对角线上. 综上所

述, 基于 GBDT训练的形成能模型在各项性能评

估指标上表现更优异, 能有效建立二维 Janus材料

的元素组分信息与形成能之间的映射关系, 保证了

预测结果的准确性. 

3.3    磁矩分类

为了评估磁矩分类模型的性能, 对四种模型进

行了十折交叉验证, 并使用宏平均 (macro-aver-

aging)方式对每个类别单独计算评价指标, 然后对

所有类别的结果取平均, 以确保每个类别的表现都

得到公平的评估. 这种方法在类别不平衡的情况

下, 能够对模型性能提供更加全面和真实的评价.

其在十折交叉验证过程中各模型在测试集上的平

均评估指标如表 4所列. 图 6(a)—(d)直观展示了

各模型在十折交叉验证过程中所有预测值和真实

值的混淆矩阵图.

上述评价指标结果显示, GBDT模型在准确

率、精确率、召回率和 F1分数上均展现出优越性,

表明其能更有效地识别和分类复杂数据集中的类

别. 相比之下, RF和 ET虽然在处理高维数据时

稳健, 但在某些类别的识别上存在误判, 这可能会

影响在实际应用中对未知样本的预测效果. XGB

虽然处理速度快, 适合大规模数据, 但其对异常数

 

10

8

T
ru

e
 v

a
lu

e
s

6

4

2
2 4 6 8

Predictions

10

(b)
10

8
T
ru

e
 v

a
lu

e
s

6

4

2
2 4 6 8

Predictions

10

(a)

Train samples
Test samples

Train samples
Test samples

图 4    晶格常数预测: 最优模型在十折交叉验证中的散点图　(a) Lattice a = b 预测任务最优模型: 极端随机树; (b) Lattice c 预

测任务最优模型: 极端梯度提升

Fig. 4. Prediction of lattice constants: scatter plots for the optimal models in ten-fold cross-validation: (a) The optimal model for

the lattice a = b prediction task: ET; (b) the optimal model for the lattice c prediction task: XGB.

 

表 3    形成能预测: 四种机器学习模型的评价指标
Table 3.    The prediction of formation energy: Evalu-

ation metrics of four machine learning models.

模型 MAE RMSE R2

RF 0.1054 0.1697 0.8671

GBDT 0.0798 0.1411 0.9070

XGB 0.0959 0.1533 0.8930

ET 0.1120 0.1701 0.8657
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据的敏感性可能在未探测的数据集上造成性能

波动. 因此, GBDT由于较强的泛化能力和稳定的

性能表现, 成为寻找高磁矩 Janus材料最具潜力的

模型.
 

3.4    高通量材料生成及第一性原理计算

以数据集中二维六角晶系的 ABC型 Janus结

构为基础, 在元素周期表中对 A, B和 C包含的所

有元素随机替换, 生成了 82018 种尚未发现的 ABC

型二维 Janus材料, 上述结构不属于原数据集.

将上述各部分评价性能最好的模型用于预测

82018种二维六角晶系 Janus材料的晶格常数、形

成能和磁矩. 模型共预测出 4204种包含晶格信息

并具有热稳定和高磁矩的结构. 为了进一步验证其

可靠性,  本文从高通量筛选结果中随机挑选了

13种涵盖了不同元素的二维 Janus结构并结合第

一性原理的研究, 计算其晶格常数、形成能和磁矩.

图 7分别为 ErFeTb,  FeNO,  HoRuSr,  DyOsSr,

EuSbSr, HoIrSr, LiUZn, PuSZn, GdKU, LuNbTi,

GdHfSe, NaTbZn及 HoNpSr共 13种二维 Janus

原子结构的侧视图. 优化后的晶格常数、形成能和

磁矩如表 5所列. 补充材料表 S1 (online)给出了

13种未优化结构的形成能和磁矩.

3µB

根据上述结果, 优化后的 13种二维六角晶系

Janus结构的形成能均为负值, 表明上述 Janus体

系是热力学稳定的. 此外, 基于第一性原理的研究

表明, 所有 13种 Janus结构均具有磁性, 理论计

算与机器学习模型的预测值一致. 其中 ErFeTb,

HoRuSr, DyOsSr, EuSbSr, HoIrSr, PuSZn, GdKU,

GdHfSe, NaTbZn和 HoNpSr的单原子磁矩超过

 , 如表 5所列. 上述具有高磁矩的原子主要属

于锕系金属 (如 Pu, Np)和稀土元素 (如 Tb, Gd,

Dy). 上述元素因为未填满的 f轨道电子的净磁矩

贡献诱导了磁性. 这表明含有锕系金属和稀土元素
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图 5    形成能预测: 四种模型在十折交叉验证上的散点图　(a)随机森林; (b)梯度提升决策树; (c)极端梯度提升; (d)极端随机树

Fig. 5. Prediction of formation energy: Scatter plots for four models in ten-fold cross-validation: (a) RF; (b) GBDT; (c) XGB; (d) ET.

 

表 4    磁矩分类预测: 四种机器学习模型的评价指标
Table 4.    Prediction of magnetic moment classifica-

tion:  Evaluation  metrics  of  four  machine  learning

models.

模型 Accuracy Precision Recall F1 score

RF 0.8770 0.8459 0.7636 0.7862

GBDT 0.8948 0.8498 0.8182 0.8263

XGB 0.8762 0.8398 0.7697 0.7883

ET 0.8795 0.8392 0.7778 0.7965
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的化合物是设计高磁矩六角晶系 ABC型 Janus材

料的有力候选. 补充材料 S1 (online)为基于机器

学习模型预测的 13种未优化的 Janus结构, 结合

第一性原理计算的形成能和磁矩.
 

4   结　论

本研究基于材料的元素组分信息, 构建了包

含 22组元素属性的矩阵特征, 每组特征通过行展

平, 生成了 198种特征描述符. 针对六角晶系 ABC

型 Janus材料的晶格常数、形成能和磁矩分类, 对

四种机器学习模型 (RF, GBDT, XGB, ET)采用

了贝叶斯超参数优化和十折交叉验证方法进行训

练, 并得到了在各自任务中表现最佳的模型 (晶格

常数 a = b : ET; 晶格常数 c: XGB; 形成能: GBDT

及磁矩分类: GBDT). 通过对数据集中六角晶系结

构进行元素替换, 生成了 82018种尚未发现的六角

晶系 ABC型 Janus材料. 应用上述训练的机器学

习模型, 筛选出了 4024种结构稳定且具有高磁矩

的六角晶系 Janus材料. 鉴于算力的限制, 随机选
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图 6    磁矩分类预测: 四种模型在十折交叉验证上的混淆矩阵　(a)随机森林; (b)梯度提升决策树; (c)极端梯度提升; (d)极端

随机树

Fig. 6. Prediction  of  magnetic  moment  classification:  Confusion  matrices  for  four  models  in  ten-fold  cross-validation:  (a)  RF;

(b) GBDT; (c) XGB; (d) ET.
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图 7    13种二维六角晶系 Janus原子结构的侧视图

Fig. 7. Side view of atomic structures of 13 two-dimensional hexagonal Janus materials.
 

表 5       13种结构优化后的六角晶系 ABC型

Janus材料的晶格常数、形成能和磁矩
Table 5.    Optimized  lattice  constants,  formation

energies,  and  magnetic  moments  of  13 two-dimen-

sional hexagonal ABC-type Janus materials.

Formula
Lattice constants Formation

energy/eV

|µ|/µB

a = b/Å c/Å A B C

ErFeTb 3.35 18.25 –2.02 2.51 3.03 6.24

FeNO 2.92 15.00 –11.87 1.17 0.08 0.47

HoRuSr 4.90 18.79 –6.66 3.79 0.02 0.05

DyOsSr 4.18 18.87 –6.89 4.89 0 0.13

EuSbSr 5.43 18.69 –5.53 6.85 0.01 0.05

HoIrSr 4.58 18.79 –7.24 3.72 0 0.05

LiUZn 2.89 18.13 –0.44 0 1.65 0.01

PuSZn 4.52 18.13 –6.75 5.61 0.10 0.01

GdKU 7.46 18.13 –2.39 7.33 0 2.96

LuNbTi 3.02 18.13 –1.76 0.02 0.28 1.67

GdHfSe 5.03 18.93 –8.46 7.33 0.34 0.02

NaTbZn 4.65 18.69 –1.87 0.02 6.00 0

HoNpSr 3.69 18.46 –1.80 3.81 4.38 0.08
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3µB

择了 13种结构结合第一性原理进行计算验证, 得

到了 10种优化后热力学稳定且单原子磁矩超过

 的 Janus材料, 研究表明, 含有稀土和锕系金

属元素的化合物是设计高磁矩 Janus材料的有力

候选, 进一步验证了机器学习模型预测二维六角晶

系 Janus材料磁性的可靠性. 

数据可用性说明

支撑本研究成果的数据集可在科学数据银行 https://

doi.org/10.57760/sciencedb.j00213.00072中访问获取.
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Abstract

Discovering compact,  stable,  and easily controllable nanoscale non-trivial  topological  magnetic structures,

such as magnetic skyrmions, is the key to developing next-generation high-density, high-speed, and low-energy

non-volatile  information storage  devices.  Based on the  topological  generation mechanism,  magnetic  skyrmions

can  be  generated  through  the  Dzyaloshinskii–Moriya  interaction  (DMI)  caused  by  breaking  space-reversal

symmetry.  Two-dimensional  (2D)  non-centrosymmetric  Janus  structurecan  generate  vertical  built-in  electric

fields to break spatial inversion symmetry. Therefore, seeking for 2D Janus material with intrinsic magnetism is

fundamental  to  develop  the  novel  chiral  magnetic  storage  technologies.  In  this  work,  we  combine  detailed

machine learning techniques and first-principle calculations to investigate the magnetism of the unexplored 2D

Janus material. We first collect 1179 2D hexagonal ABC-type Janus materials based on the Materials Project

database,  and  use  elemental  composition  as  feature  descriptors  to  construct  four  machine  learning  models:

random  forest  (RF),  gradient  boosting  decision  trees  (GBDT),  extreme  gradient  boosting  (XGB),  and  extra

trees  (ET).  These  algorithms  and  models  are  constructed  to  predict  lattice  constants,  formation  energy,  and

magnetic  moment,  via  hyperparameter  optimization  and  ten-fold  cross-validation.  The  GBDT  exhibits  the

highest  accuracy  and  best  prediction  performance  for  magnetic  moment  classification.  Subsequently,  the

collected data of 82018 yet-undiscovered 2D Janus materials, are input into the trained models to generate 4024

high magnetic moment 2D Janus materials with thermal stability. First-principles calculations are employed to

validate  random sample  of  13  Janus  materials  with  high  magnetic  moment.  This  study  provides  an  effective

machine  learning  framework  for  classifying  the  magnetic  moments  and  screening  highthroughput  2D  Janus

structures, thereby accelerating the exploration of their magnetic properties. The datasets provided in this work

are available from https://doi.org/10.57760/sciencedb.j00213.00072.
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